F#OR THE BEGINNIN
BEGINNER

ENRICH

ANOTHER 8092 193, 300 FROM 5™ (IS

CLOAD-Loads BASIC
program file from cassette.

CLS-Clears the display.

CSAVE-Stores resident
program on cassette tape.

EDIT-Puts computer into

edit mode for specified line.

END-Ends program
execution.

FOR...NEXT-Opens
program loop.

GOSUB-Transfers program
control to the specified
subroutine.

GOTO-Transfers program
control to specified line.

IF.. . THEN-Tests
conditional expression.

INPUT-Inputs data from
keyboard.

LET-Assigns value to
variable (optional).

This book’s unique binding
enables the user to prop it
up by the computer when
in use. Note illustration.

STATEMENTS

!

LIST-Lists program lines to
the video display.

NEW-Erases program from
memory.

PRINT-Prints an item or list
of items on the display at
current cursor position.

PRINT @ n-Prints beginning
at n, n =0-1023.
RANDOM-Reseeds random
number generator.

REM-Remarks; instructs
computer to ignore rest of
line.

RETURN-Returns from
subroutine to next statement
after GOSUB.

RUN-Executes resident
program or portion of it.

TRS-80
FOR THE
BEGINNING BEGINNER

An easy and helpful introduction
fo computers and programming

Margaret Steimer

ENRICH/OHAUS
San Jose, California

Graphic Design by Kaye Graphics
lllustrations by Bill Eral
Cover Design by Kaye Quinn

Editorial Direction by Contemporary Ideas, Inc.
Edited by Jim Haugaard, Jana Morris, and Matt Foley

Typography by KGN Graphics

Published by
ENRICH/OHAUS
2325 Paragon Drive
San Jose, CA 95131

For information on rights and distribution outside the U.S.A,, please write
ENRICH/OHAUS at the above address.

Copyright © 1983, ENRICH DIV.JOHAUS. All rights reserved under Interna-
tional Convention. No part of this publication may be reproduced or
distributed in any form or by any means, or stored in a data base or retrieval
system, without the prior written permission of the publisher, with the excep-
tion that the program listings may be entered, stored, and executed in a
computer system, but they may not be reproduced for publication.

TRS-80 is a registered trademark of Tandy Corporation.

ISBN: 0-86582-121-6

Catalog No. EN79224

Printed in the United States of America
10 9 8 7 6 5 4 3 2 1

ABOUT THE AUTHOR

Margaret Steimer is a computer professional whose work
focuses on enhancing the field of education with the many
media advantages that microcomputers offer. Currently with
DesignWare, Inc., Ms. Steimer designs and implements
courseware for topics ranging from pre-school computer
literacy to college level data processing.

She has co-authored Discover BASIC (Science Research
Associates, Inc., 1982), a high school course in the BASIC
programming language. The course consists of a student text/
teacher guide and companion computer programs. It is
currently available on several disk-based microcomputers,
including the TRS-80 Model lil.

ACKNOWLEDGEMENTS

The author wishes to acknowledge the students and staff of
Magic Mountain School in Berkeley, for field testing the
material, and DesignWare, Inc., for the use of their word
processing facilities.

The publisher wishes to acknowledge the following companies
for their generosity in furnishing us with photographs for use
in this book.

RADIO SHACK, A DIVISION OF TANDY CORP.-44
INTEL CORPORATION-42
MEMOREX-47

TABLE OF CONTENTS

Page

INTRODUCTION. t it ittt s et et e c it eenaeens 6
Who this book is for and what it will provide.

CHAPTER1—HOWTOGETSTARTED 7

Setting up your computer and exploring the keyboard.

CHAPTER2—HARDWARE i, 39
What makes up a computer and how does it work?

CHAPTER 3—BEGINNING PROGRAMMING 53
What is a program? Editing, writing programs,
and how to save your programs.

CHAPTER 4—GETTING YOUR PROGRAM ORGANIZED ... 69
Creating an algorithm, making a flowchart and
debugging using friendly graphics to do the job.

CHAPTER 5—PROGRAMMING CONTINUED 87
Placing variety in your programs using GOTO’s,
IF-THEN’s and GOSUB'’s.

CHAPTER 6—COMPUTER LANGUAGES 106
Many different languages that “talk” to computers.

GLOSSARY ... 119

INTRODUCTION

Welcome to the TRS-80 computer! You are probably wondering
which key to press first, right? By the time you finish working
through the exercises and games in this book, you will know
that and much more. The important thing to remember is this:
The way to learn about a computer is to get your hands on it!
The rest is easy.

Since you are probably a novice, like most, you will need to
start at the absolute beginning. This book does just that, starts
at the beginning.

Don’t be afraid to experiment with the computer; it won’t yell at
you. Computer programmers have developed an easy method
for communicating with the computer. This book will help you
learn this method. You will be in complete control and make
the computer do amazing things.

This book will not make you an “expert”, but it will give you
enough information about computers to make you “computer
literate”. This means that the next time a group of people start
talking about computers, YOU will be able to join in.

This book also gives you enough “hands on” experiences so
that you are able to write and run your own programs. With this
knowledge, we know that you will want to go on and learn
about the TRS-80.

Remember—Don’t be afraid to experiment. You can’t hurt the
computer by pressing the keys. This book is meant to guide
you as you discover what this computer can really do. Each
new step will be given with easy to follow directions. Your
effort and curiosity will pay rich rewards. Prop this book up by
your computer and let’s get started.

6

HOW TO GET STARTED

o

= e

Level Il BASIC and Disk BASIC

Below are instructions for using Level Il BASIC (the kind that’s
built into ROM) and for Disk BASIC. Within each category, you
will find a separate set of directions for the Model | and Model
Il TRS-80. Find the directions for the kind of computer you
have and follow them carefully. You will then be ready to start
speaking BASIC with the TRS-80.

Disk BASIC is used with disk drive systems. It has commands
that help you send programs and data back and forth between
the computer and the flexible disks you’ll use for storage. If
you don’t have a disk system, you can use a cassette tape
recorder to store programs and data. You don’t have to have a
cassette, however, just to use the BASIC that comes with the
machine.

After you get to the section on Level Il BASIC or Disk BASIC,
find the directions for Model | or Model IlI, whichever you have.
There are differences in how the parts of each machine are
connected. But after the computer is connected and the power
is on, the two models are much the same in operation. What
matters more is which kind of BASIC you are using. Whether
you're using Disk BASIC or Level Il BASIC lets you know which
special commands you may use.

7

Model I-Level Il BASIC

Below is a diagram that shows how your Model | TRS-80
should be connected.

MODEL |

Video Monitor Power
Monitor (CRT)

CPU/Keyboard

Tape Jack

CPU Power Cassette Recorder

Video Jack
Power Supply

Although you don’t need a cassette recorder to use BASIC, the
instructions here will include its use. You will eventually want
to store, or record, some of the programs you write, and you
will need a recorder in order to do so.

8

If you intend to use a cassette recorder, follow these
directions.

1. Make sure the computer is turned off.

2. Locate the cassette recorder connection cable (five-pin
connector on one end and three mini-plugs on the other
end).

3. Connect the five-pin connector to the cassette jack on the
back of the keyboard.

4. Connect the three plug end to the cassette recorder,i.e.,
black mini-plug to EAR, grey mini-plug to AUX, and grey
submini-plug to REM.

5. Connect the AC power cord to an AC outlet.

Whether or not you use the cassette recorder, continue with
these directions.

1. Connect the computer AC power cord to an AC outlet.
2. Press the POWER button on the right of the video screen (E
"in the diagram). :
3. Press the ON button on the back of the keyboard (C in the
diagram).
4. After a few seconds, the message

Memory Size?

will appear on the screen. Toward the right on your keyboard
is a key labeled[ENTER |. You press the key when-
ever you are finished with an instruction. For now, just press
the[ENTER] key to indicate that you want to use all the
computer's Random Access Memory (RAM) for BASIC
programs. (Later, you might wish to save part of your RAM
for special uses. Then you would need to make a special
entry.)

Once you press [ENTER |, you will see

Radio Shack Level Il Basic
READY
>

The message means that Level || BASIC is now ready for
your use. Turn to page 23 to begin.

10

Model Ili-Level Il BASIC

Below is a diagram that shows where the cassette jack is that
connects the Model Ill TRS-80 to a cassette recorder. The
section on Disk BASIC for the Model Il shows where the power
switch is, along with a sketch of the machine.

Cassette Recorder

Cassette Jack

Connection Cable

Although you don’t need a cassette recorder to use BASIC, the
instructions here will include its use. You will eventually want
to store, or record, some of the programs you write, and you
will need a recorder in order to do so.

11

If you intend to use a cassette recorder, follow these
directions.

-

5.

. Make sure the computer is turned off.
. Locate the cassette recorder connection cable (five-pin

connector on one end and three mini-plugs on the other
end).

. Connect the five-pin connector to the cassette jack on the

back of the TRS-80.

. Connect the three plug end to the cassette recorder,i.e.,

black mini-plug to EAR, grey mini-plug to AUX, and grey
submini-plug to REM.
Connect the AC power cord to an AC outlet.

Whether or not you use the cassette recorder, continue with
these directions.

1.
2.

3.

Connect the computer AC power cord to an AC outlet.
Turn on the computer. The power switch is under the
keyboard on the right side.

After a few seconds, the message

Cass?

will appear. This allows you to control how fast the
programs and other data are to be transferred to and from
the cassette recorder. Type L for slow and H for fast. (If you

press |[ENTER|, H will automatically be chosen.)

. Next the message

Memory Size?

will appear on the screen. Toward the right of you keyboard

is a key labeled | ENTER]. You press the[ENTER key

whenever you are finished with an instruction. For now, just
press the [ENTER |key to indicate that you want to use all

12

the computer’'s Random Access Memory (RAM) for BASIC
programs. (Later, you might wish to save part of your RAM
for special uses. Then you would need to make a special
entry.)

Once you press |[ENTER]|, you will see

Radio Shack Model ill Basic
(c)’80 Tandy
READY

>®|

The message means that Level || BASIC is now ready for
your use. Turn to page 23 to begin.

13

Disk BASIC

If you have a disk system, then the BASIC you will use is
different than the BASIC that comes built in. Disk BASIC is
actually an add-on to Level Il BASIC. Thus the disk operating
system, TRSDOS, has to move, or “load,” Disk BASIC into
memory from a master diskette (at your request, of course).

Write

- @————— Protect
Notch

Jacket

Flexible Diskette

Storage Envelope

-—

You use the disk operating system by placing a flexible
diskette in the disk drive. TRSDOS is a set of control programs
that “keep house” for your computer. The Disk Operating
System/Disk BASIC manual contains all the commands for
using TRSDOS, such as printing a list of all the programs on a
diskette or loading certain programs (such as Disk BASIC) into
memory. These commands are different from the BASIC
instructions you give the computer.

14

You must see the message

DOS READY

or TRSDOS READY

(depending on whether your computer is a Model | or Model lil)

in order to give a TRSDOS command. When you have Disk
BASIC loaded and see the message

READY
g |

you may give the computer instructions in BASIC.

15

Model I-Disk BASIC

Below is a diagram that shows how the Model | TRS-80 disk
drive(s) should be connected.

Expansion Interface

S

Disk Drive 0
Disk Drive 1

Power
Switch

Follow these steps in order to begin giving BASIC instructions
to the computer.

1. Be sure everything is off and there is no diskette in either
disk drive.

2. Push the power button, which is in the front center of the
Expansion Interface.

3. Turn on each disk drive, starting with Drive 0. The switch is
on the back of the disk drive. A red light comes on when the
disk drive starts operating.

16

4. After the red light goes out on the disk drive, insert the
System Master diskette into Drive 0, as shown below.

7

N
J
(=

N

Here are a few 'thmgs to remember ,when you
handle d|skettes
.. Touch only tt
 diskette itself.. :

* Never let the d|skette stay m the sun or

pl‘astuc camer-—-never the

.. Always tore the dlskette m nts paper
- envelope. f
. e Always walt untul , V
~ before you insert orremoVe a duskette
‘When the light is on, the diskette is
. spinning. Moving the diskette while |t
spins can damage the lnformatlon .
C[recorded on |t . .

ed ght lS’ out

17

5. Turn on the TRS-80 CPU/keyboard. The power button is in
back toward the right.

6. The disk drive light will come on, indicating that the
computer is loading the TRSDOS control programs into
memory. Once the loading is complete, you will see the
message

TRSDOS-DISK OPERATING SYSTEM-VER 2.1
DOS Ready

You tell TRSDOS that you want to load Disk BASIC from the
system master diskette by simply typing

BASIC

7. You will need to answer two more questions before you are
ready to begin. The first is

How Many Files?

Later, you might want to have a number of data files open, in
which case you would type in a number. For now, just press

[ENTER].

8. You will see

Memory Size?

Again, just press[ENTER]in order to tell the computer that
you want to use all the random-access memory for BASIC
programs. (Later on, you might wish to save part of your
RAM for special uses. Then you would need to make a
special entry.)

The “READY” message should appear, indicating that you
are now ready to use Model | Disk BASIC. Turn to page 23 to
begin.

18

Model Iil-Disk BASIC

Below is a diagram that shows what’s what on your Model IlI
TRS-80.

Drive 1

Drive 0

Reset Key

Power Switch

19

Follow these steps in order to begin giving BASIC instructions
to the computer.

1. Be sure everything is off and there is no diskette in either
disk drive. Turn on the computer by flipping the power
switch just under the right side of the keyboard. A red light
will come on indicating that disk Drive 0 is operating.

2. As soon as the red light goes off, open the door of Drive 0
(the Jower one, if you have two disk drives) by flipping it up.

3. Insert a System Master diskette, as shown below.

20

Here are a few thlngs to remember when you

sk 'tte m |ts haper .

; -;Always walt untrl the red hght is out .
~ before you insert or remove a dlskette .
When the hght is on, the disketteis
spmmng Movmg the d|skette while |t
spms can damage the mformatlon - -
recorded onit. .

4. Close the disk drive door. Now press the [RESET|key. The
disk drive light will come on again, indicating that the
computer is loading control programs into its memory.

5. The computer will ask you for the date and time.

Enter date (MM/DD/YY)?

Suppose it’s March 15, 1984. You would enter the date by
typing

03/15/84 |[ENTER

After pressing [ENTER|, this message will appear

Enter Time (HH:MM:SS)?

21

Then, if it is 2:30 P.M., type
14:30:00 |ENTER

If you make a mistake, the computer will print a message to
try again.

. The following message will appear on the screen.
TRSDOS Ready

You tell TRSDOS that you want to load BASIC from the
system master diskette by typing

BASIC | ENTER

. You will need to answer two more questions before you are
ready to begin. The first is

iles?
How Many Files® -

Later, you might want to have a number of data files open, in
which case you would type in a number. For now, just

press |[ENTER]|.

. You will next see
ize?
Memory Size? -

Again, just press in order to tell the computer that
you want to use all the random-access memory for BASIC
programs. (Later on, you might wish to save part of your
RAM for special uses. Then you would need to make a
special entry.)

The “READY” message should appear, indicating that you
are now ready touse Model |1l DiskBASIC.Turn to page 23 to
begin.

22

Let’s Begin

Now you are ready to see some results! If you are familiar with
a typewriter keyboard, you won’t have any problem using the
TRS-80’s keyboard. They are very similar. If you haven’t used a
typewriter before, you will want to play around with the letters
and numbers. That way, you will quickly learn where to find
them. In addition to the letters and numbers, there are keys
that are specially for use on the computer. The best way to
learn about each of these is to use them as the need arises. As
you proceed through this book, you will always find the double
asterisk (**) marking computer exercises.

Clearing the Screen

A very important key is the key. Whenever the screen
becomes filled with characters, simply press the key
and the screen will be erased. This is very useful for people
who like to start with a “clean slate”.

Beginning to Type

** You always wanted to see your name in lights, right? Go
ahead,type your name! What happens if you press (on
the right side of the keyboard) after your name? You’ll most
likely see

NAME
?SN Error
READY

bg |

That’s a fine way for the computer to greet you! Don’t worry,
you will soon learn a way to get the computer to remember
your name. Notice the flashing square? That is called a cursor.

23

It lets you know where the next character will be printed on the
screen. When you type messages on the keyboard, you will
notice that the cursor keeps moving along as each character
appears. By pressing , you tell the computer that
you've finished your message. Then,whenever you see the
message (called a “prompt”)

READY
bd |

you will know that the computer has carried out your orders
and is waiting for more.

Typing the Alphabet and Numerals

** First, type the entire alphabet a few times, so that you get
used to where each letter is on the keyboard. Second, type the
numerals, from 0 to 9. Next hold down the key marked
while you type the numerals and see what appears on the
screen. Notice the characters above each numeral on the
keyboard. That’s where the strange characters came from.
There aren’t any characters above the letters of the alphabet.
Why are all the letters capitals, instead of lower case? The
BASIC interpreter wants its orders only in capital letters. The
computer is programmed to create capital letters automatic-
ally—without any effort on your part.

Typing Lower Case Letters

** If you want to use some lower case letters, try the
following: Hold down the[SHIFT] key and type 0 (zero,not O)".
You didn’t see anything print on the screen when you did. But
now type your name. The computer will now behave just like a

1 You should first check your reference manual to make sure that your computer can make lower
case letters. Some models can’t.

24

regular typewriter. If you want a capital letter, you must hold
down the [SHIFT]key while you type it. Remember, though,
you must use capital letters when you give instructions to the
computer. Any time you want to return to all capitals, just
press [SHIFT] and @ again. It will go back and forth in this
way from capitals to lower case. (In computer jargon, the
computer “toggles” when you switch back and forth.)

Exploring Further

** Notice what happens if you hold down a letter. How many
lines will print on the screen before the computer refuses to
print any more? Next, type any letter and then press the key
marked [— |. Repeat this a few times. The [—] key
spaces out, or tabs, printed characters across the screen.
After you get a few characters on the screen, press the key
marked [«— |; this is the backspace key. The backspace key
allows you to erase mistakes and retype your lines. Even if you
never make mistakes, you may “change your mind”
occasionally.

If you want to change a whole line without backspacing all the
way to the beginning, press the [BREAK]key in the upper right
hand corner of the keyboard. [BREAK]tells the computer,
“Forget about the current line. | want to start another one.”

Talking BASIC f

This is all very interesting, you might think, but the computer
still doesn’t understand what appears on the screen! Every
time you press [ENTER]the same polite 2SN Error appears.
That’s because you still aren’t talking BASIC to the computer.

25

Try this; suppose your name is Kathy.
** Type this:

PRINT “1 ONLY TAKE ORDERS FROM KATHY.”

Congratulations! You typed your first BASIC command. The
BASIC word “PRINT” tells the computer to print something on
the screen. That “something” is simply whatever you enclose
in quotation marks. Now press [ENTER |and see what happens.
Your TRS-80 proudly announces,

I ONLY TAKE ORDERS FROM KATHY.

But you already saw “I ONLY TAKE ORDERS FROM KATHY”
when you typed it in, so why is this special? For this reason:
You can combine characters in quotes with information that
you store in the computer to make PRINT commands. You
store information by using variables. A variable is simply a
name that stands for different values at different times.

String Variables

** Tell the computer to store your name in the variable N$.
This is how you do it. Type:

NS = “KATHY"” |ENTER

This is called an assignment statement, since you are
assigning the string variable N$ a value. N$ is called a string
variable because its value is a “string” of characters. BASIC
doesn’t care what it finds in a string—numbers, spaces,
letters, and punctuation are all acceptable.

** Now you have another way to print your first message.
Type the following instruction.

PRINT “‘I ONLY TAKE ORDERS FROM": N$
26

The semi-colon tells the computer not to start a new line
between different things to print. You get the original message
as soon as you press| ENTER], right? What happens, though,
if you assign a new value to the variable N$? Suppose you

type:
NS = “NOON UNTIL DINNER TIME.”
Type the same PRINT message now:
PRINT “‘I ONLY TAKE ORDERS FROM '*;N$

Most varieties of the BASIC language allow a wide range of
variable names. You might use NAMES$, MES$, or N2$, for
instance, for the variable that holds your name. Just be sure
that your string variables begin with a letter and end with a
“$H.

A Special PRINT Instruction

** You can do more than just print things. You can also tell the
computer where to print, anywhere on the screen. To do this,
you use a slightly different form of the PRINT command.
Type the following:

PRINT@775, “HERE | AM!"

This instruction tells the computer, “Print the message
starting at location 775 on the screen.” There are 1,024 places
on the screen to print characters. Location 0 is in the upper
left-hand corner and location 1023 is in the lower right hand
corner. There are 64 characters per row, and 16 rows. Don’t
worry about where spaces are in this or other commands—
BASIC doesn’t. The only time BASIC really notices spaces is
when they are inside quotes, such as the string above,

“HERE | AM!™
27

** Try the following activity. Assign your name to a string
variable, such as N$.

N$ = “GEORGE”

Now think of different numbers from 0 through 1023 and make
a print command such as the one above to print your name.

PRINT@600, N$

Remember, if there is a lot of typing on the screen, you can
clear it off by first pressing the [CLEAR] key on the right of
your keyboard. Then type in your print instruction. Before you
do, though, try guessing where your name is going to show up!
Each time you type the instruction, use a different number for
the print position.

** How would you get the computer to print the following
message in roughly the middle of the screen?

LE AR SR AR EREREEEE R R R R R R R E L L R L L L s

INTRODUCING GEORGE, THE WORLD’S GREATEST PROGRAMMER!

LEA RS EEEEREEEEREEEEERERRERE R XN R R I I 0 g gy v Ui

The screen would look much nicer without the faithful
“READY” showing up after each line is printed. You can avoid
having the message print after each line by putting several
PRINT@ commands on one line. Do this by separating them
with a colon. For example, the above message can be printed
with the following line. (Don’t press |ENTER |until you get the
entire line typed in.)

pRINT@BQII Tk khkhhhkhkkhhhkkhh Ak khdkhhdkhhhkhdkkhdkhkhdk ok kdk ok
3

Frxwrexn :PRINT@455, “INTRODUCING GEORGE, THE WORLD'S
GREATEST PROGRAMMER!"';:PRINT @519, ' * ¥ ¥ ¥ ¥ *** sk xx sk xk sk kx x

KhkhkhkhkhkhhhhkhhhhhhhhhhkkhkArkAk A A rhh?r,
]

28

Arithmetic on the TRS-80

Recall that each line has 64 characters. You can use that fact
to plan where you want items printed. Notice that the numbers
used with the PRINT@ statements in the above exercise are
exactly 64 apart; that is 391+ 64 is 455, and 455 + 64 is 519.
Each string to be printed, then, will begin at the same column
on the screen, but on successive rows.

For instance, if you want to type a string of question marks at
the start of the sixth line, you can simply type

The asterisk (*) in the PRINT@ command tells the computer to
multiply 64 times 6. Most computer languages use the asterisk
to mean “multiply two numbers.” Similarly, you tell the
computer to divide with a slash (/), to subtract with a minus
sign (-), and to add with a plus sign (+). The following
exercises will allow you to practice using the arithmetic
operators, as the symbols are called.

Numeric Variables

You already know about string variables. There is another kind
of variable—for numbers. Numeric variables follow the same
rules as string variables, except that you don’t use the dollar
sign and you don’t use quotes when you assign the values. As
you might expect, numeric variables will only accept number
values. Values may be in the form of either numbers or
numeric variable names.

** Let’s see if the TRS-80 knows its times tables! Try the
following.

-
4"“

A = 2:PRINT A

This line instructs the computer to assign the value of two to
variable A and print that value. Now type:

A = A* 2:PRINT A

Do this several times.

A = A*2:PRINT A |[ENTER

What is happening to the value of A? You are actually telling
the computer, “Multiply the old value of A by two and store the
result as the new value of A. Print the new value.” Keep in mind
that expressions and numbers may only appear on the right-
hand side of an assignment statement. The numeric variable is
the only thing that should be on the lefthand side. Experiment
with some other variables and values.

30

Here are a few examples.

X = 1200: PRINT X [ENTER] B = 2345678: PRINT B [ENTER
X = X/2: PRINT X [ENTER B = B + B: PRINT B [ENTER

K = 33.5: PRINTK [ENTER| S = 1: PRINT S [ENTER

K = K-5: PRINT K [ENTER S = §*(1/2): PRINT S [ENTER

Notice that you can use decimals, fractions, and any combina-
tion of operations you want in assigning variables. You can
also assign the value of one variable to another, as the
following example shows.

A = 23:B = A: PRINT A,B

(The comma in your print statement will separate the values of
A and B with eight spaces, or a tab.) Now both A and B contain
the value of 23. If you then change the value of A to, say, 213,
the value of B will remain 23. Once a numeric variable value is
assigned, it will remain the same as long as the computer is
turned on-unless you change it with another assignment
statement.

ITs TIME

7O CHANGE

YOUR WwAY'S.
7h

31

Precedence

Computer arithmetic is not very democratic. The computer will
go through an expression such as

K = 356-34/5+72*8

and do all the multiplying and dividing first (from left to right).
The result, then, would be

K = 356-6.8+576

Only then will the computer go back and perform all of the
addition and subtraction. Thus:

K =925.2

The term precedence among arithmetic operations simply
means that multiplication and division are performed before
any addition and subtraction. If you wanted the 356-34 done
first in the above example, there is an easy way you could doit.
The computer will do any operations first (again from left to
right) that are inside parentheses before it follows the usual
rules. In other words, operations inside parentheses take
precedence over those outside. The expression above would
then be

K = (356-34)/5+ 72*8
which would turn out to be

K = 322/5+72*8
or,
K = 640.4

That is quite a difference! Try the two different problems.
Remember to type PRINT K after you enter each problem.

32

Word Problems

Word problems are a familiar part of any math course you
might study. Word problems are also an important part of
learning BASIC programming. That is why the more practice
you get at translating a word problem into a workable arith-
metic expression, the better you will become at creating
interesting programs. As you probably noticed in the exercises
with numeric variables, there are a few differences between
normal algebraic expressions and assignment statements in
BASIC. Even though the instruction

A=A+ 3/B

looks somewhat like an algebraic equation, it would not make
sense in true algebra (since A appears on both sides). In
BASIC, though, the expression makes perfect sense. It says
“Divide 3 by the current value of B, add the result to the current
value of A, and store the final result as the new value of A.” The
value of B is unchanged.

** Here are two examples of word problems for you to try. The
BASIC expressions for the first one are printed here to get you
started.

1. Jane’s cat had 6 kittens. Her dog had 9 puppies. If she gave
away 2 kittens and 4 puppies, how any animals did Jane have
left?

KITTENS = 6 (total kittens)

PUPPIES = 9 (total puppies)

ANIMALS = KITTENS - 2 + PUPPIES - 4 (total animals =
remaining kittens
plus remaining

puppies)
33

Remember, you must instruct the computer to print the final
value of ANIMALS in order to see the result, i.e.,

PRINT ANIMALS

2. John built a fence around all four sides of his yard, which
measures 120 by 82 feet. He left a ten-foot opening in one side
for parking his boat, intending to add a gate later. How many
feet of fencing did he need?

(Think of some problems of your own.)

More Numbers

** Experiment a little with large numbers, small numbers, and
very long numbers. See what happens if you make the
following assignment. Type in the following line and press

[ENTER] .

BIG = 123456789*123456789
Now to print the value of BIG, type this line and press| ENTER].
PRINT BIG
You should see the answer,
1.52416E+ 16

appear on the screen. No, the computer did not get mixed up.
This is the way scientific notation is expressed on the TRS-80.
The “E + 16” part says that the number in front of it is actually
multiplied by 10®. (In case you are not familiar with exponents,
10" means 10 multiplied by itself 16 times.) In other words, the

real number is

15241600000000000

34

The TRS-80 can handle even bigger numbers. There is a limit,
however! You'll know when you reach it, because the computer
will gasp, “OVERFLOW?”.

One way to make big numbers is by using exponents, as
mentioned above. For example, in the number 10% in the
paragraph above, 16 is the exponent. You can tell the TRS-80
to raise 3 to the power of 2 (that is, 3 with an exponent of 2)by
typing the following.

X=31t2
Don’t worry if you see

X = 3[2
That is the way the key prints on some models.
Now type PRINT X and [ENTER].

35

Graphics

The characters you see on the keyboard are not the only ones
you can print. Each character has a code number, which the
computer can recognize. This number is usually the same, no
matter which computer you are using. This standard code is
called ASCIlI (American Standard Code for Information
Interchange). For example, a capital “A” has the code number
635. (Just for your information, a lower case “a” has a different
code number. That’s why it is important to give BASIC its
instructions in capital letters.)

Graphics characters on the TRS-80 have ASCII codes of 128
through 191. Some models have special graphics and other
characters above 191. The table on page 125 lists the entire
“cast of characters” to make TRS-80 graphics, together with
their code numbers. To print character 181, just type

PRINT CHR$(181) |[ENTER

You can use the PRINT@ instruction to have these characters
appear anywhere you want on the screen. In order to make
character 181 appear in the lower righthand corner of the
screen, you would type

PRINT@1023, CHR$(181) |[ENTER

That is almost all you need to know in order to make pictures
on your TRS-80!

** Try printing a character three or four times across the
screen. Character 156 looks interesting. See what results if
you type the following.

PRINT@64*15 + 10,CHR$(156);:PRINT@64*15 + 11,CHR$(156)::
PRINT@B4*15 + 12,CHR$(156)

36

It’s beginning to look interesting. It’s a lot of work, though!
Note the colons in the line you just typed. You can use colons
to put several complete commands on the same line, such as
the three separate PRINT commands. In this case, you wanted
to print several characters at once without having the TRS-80
faithfully chime,

READY

after each one. (Did you notice the semi-colons as well? These,
you may recall, keep the computer from automatically starting
each print item at the beginning of the next line. This is a
handy fact to know when you are a struggling computer artist!)

At this point, you may be wondering, “Isn’t there an easier
way? What about how fast computers are supposed to be?”
Yes, there is an easier way! You have seen for yourself that the
computer can do many things, one at a time. One of its real
charms, though, is that you can tell it do the same thing many
times. Not only that, it will perform a/l the work you give it
before coming back for more orders. One way to do this is by
using a /oop. It is called that because the computer keeps
looping, or circling, back to repeat your orders as many times
as you tell it to.

** There is an old trick that some teachers like to use. It is
called “punishment by boredom.” There are many variations,
but usually the errant student is given the task of writing
something very dull 500 times or more. From that point on, it is
a contest between which gives out first—the student’s brain or
his hand. Remember something we said earlier about the
computer never getting bored or tired? Let’s prove it.

Type and [ENTER] the following line.

FORN= 1 TO 500: PRINT "'l WILL BE A GOOD COMPUTER": NEXT N

37

By the way, how’s that for fast? This is the way you tell the
computer to loop in BASIC. It tells the computer to count from
110 500, printing the message with each count. In fact, you can
use a similar loop to cover the entire screen with your name!

Now back to graphics! By using a loop together with the
graphics characters, you can create any pattern you wish on
the screen.

**Just for starters, try the following line. Then make up your
own variations, using different combinations of graphics
characters.

FORX = 1 TO 1000: PRINT
CHR$(153);CHRS(166);CHRS(128);:NEXT X

This example uses a plain PRINT statement, but you can also
experiment with the PRINT@ form.

Now you have some of the “basic” ideas on how to make the
TRS-80 do things for you. Experiment on your own. See what
kinds of pictures you can make with the graphics characters.

In following chapters you will learn how you can animate
them!

38

HARDWARE

Let Me Count The Ways

The word compute means to figure something. People have
been computing for thousands of years. Probably the first
“computers” were fingers; these “computers” are still in use
today. Through the years there have been a lot of other
computing devices, such as the abacus and the slide rule.
Even Stonehenge, the ancient group of huge stones set in a
large circle in the countryside west of London, is said to be a
kind of primitive computer. Electronic computers are simply
the newest on the scene.

What Is A Computer?

Computers are machines. You can give them information
called “data” and instructions to do certain things with that
information. A computer will follow your orders to do the job
and show you the results when you ask for them. Computers
also store information in their memory and use it when
needed.

39

Computers, however, can’t think or reason in the way people
do. A computer can’t, for example, collect several pieces of
information and draw conclusions. Computers can’t combine
ideas or take the best parts of several ideas to come up with a
brand new idea. This ability to think and reason is reserved
only for the human brain.

The computer can do many of the simpler things our brains
can do, but can do them much faster. The computer can give
you “yes” or “no” answers if you tell it exactly what data
equals “yes” and what equals “no” and as long as it has this
data in its memory. The computer can arrange bits of
information in order and can sort things out that are alike or
find those that are different. A computer’s memory can store
much information and it never forgets unless you tell it to or
turn it off!

In order fora computer to work a person must give rt
- two things: .
e mformatron (data) .

e instructions on what to do with the '

 information ,

| PROBABILITY
| OF MAY&E«)

The Family Tree

Computers have been around for four computer generations.
The first computer that could be called an ancestor of the
present day microcomputer was the Mark |, which was
invented in 1944. It is considered to be the first true computer
because it could not only do caiculations, but also store the
instructions for carrying out a group of jobs. In the late 1940’s,
the first generation of computers in the TRS-80’s family tree
was invented. These first generation computers were very
large, heavy machines in big metal cabinets. They were used
mainly by the government to store large amounts of data. They
would often take up entire floors of buildings. This first
generation of computers was controlled by vacuum tubes like
those in old time radios. These tubes were large, some as big
as a six year old child. When used, vacuum tubes became very
hot and tended to burn out quickly. As a result, vacuum tube
computers were not very dependable.

GRID

CATHODE PLATE

%)

With the invention of the transistor in the early 1960’s, the
second generation of computers was born. Transistors were
smaller, ran cooler, and served the same purpose as the
vacuum tube. Second generation computers were smaller and
operated up to ten times faster than vacuum tube computers.
Second generation computers were also cheaper and more
dependable.

41

Around 1965, an improved computer that was controlled by
integrated or printed circuits came on the market. These third
generation machines could do a million calculations a second.
They were even smaller and more reliable than the second
generation machines. Third generation computers are still very
much in use in business and government today.

“Personal”, or microcomputers, developed about 1976, are the
fourth generation of computers. These computers are
controlled by microchips. Microchips are tiny circuits etched
onto crystals so small that they could pass through the eye of
a needle. Each chip can hold as many as one thousand individ-
ual circuits. Microcomputers are much smaller, much cheaper,
and fifty times faster than the third generation types. The
TRS-80 is a fourth generation general purpose computer.

The fifth generation computers are being developed now. They
will be controlled by chips with many times the number of
circuits found on current microchips. With .this development,
you will be able to fit a computer in your pocket that has the
same power as one that took up an entire floor.

42

A Computer Is The Sum Of Its Parts

All computers, whether the large computers used in business
or the small microcomputers like the TRS-80, have the same
system parts. All parts are needed to make the system work.
The five main parts in a computer system are shown in the
diagram below.

ARITHME T/Ca
uvIT v
A
777
j’
70Kk
OFPERA IVPUT ﬁ cPU ovTPUT
727
| MEMORY
12728 %
f
7 / /g

The pieces of equipment that make up these five parts are
called HARDWARE. The term SOFTWARE is also used by
computer buffs when speaking “computerese”. SOFTWARE is
the name given to the instructions that the computer follows.

43

Input

You may give information to your computer in several ways,
just as you can give information to a friend in a letter, a
telegram, or on the phone. Machines designed to put informa-
tion into a computer are called input equipment. Examples of
input equipment include:

e Card Readers ® Tape Readers
e Disk Drives ® Program Recorder
e Keyboard e Modem

Large computers may use a card reader, which reads punched
cards, or tape readers, which read punched or magnetic tape.
They may also use large disk drives that read hard magnetic
disks. Information can be typed directly into a computer by
using a keyboard, and sometimes a person may even speak to
the computer through a microphone unit. Also, a unit called a
“modem” that will hold the family telephone, can be
connected to your computer. This modem enables your
computer to “talk” to another computer at the other end of the
line. This receiving computer might be located at the library,
the university, a friend’s house, or anywhere computers are at
work.

44

With the TRS-80 Model | or Model IIl you will use a diskette in
the small disk drive, or a cassette tape in the program recorder
to “talk” to your computer. When you type on the TRS-80
keyboard, you are also “feeding” information into the
computer.

Memory

When you input information to the computer, it goes into the
computer’s random access memory unit after you
press [ENTER]. The computer stores the information until it is
needed. You have a memory unit too; it sits on your neck and
has an outer covering of hair (in most models!). Even though
the TRS-80 may store as much as 48,000 bytes of information
at one time, your memory unit is even better and you have the
ability to think on your own. That’s why you control the
computer.

There are two kinds of memory in the memory unit, the RAM
and the ROM. The RAM (Random Access Memory) has the
capacity of storing information sent in through the input
equipment. The advantage of the RAM is that you can change
it easily to do something new. The disadvantage of RAM is that
it forgets everything you have told it when the computer is
turned off.

The other type of memory is called ROM. The ROM (Read Only
Memory) has memory cells that are programmed at the factory
with information about the number system, how to load and
save information, and all those skills the computer must have
to do its work. The advantage of the ROM is that it remembers
its instructions even after the power has gone off and on
again. The ROM, however, as its name implies, can only be
read. It can’t be changed by the input equipment and so does
not act or react with you. You can see, therefore, that both
RAM and ROM are needed as part of the computer’s memory.

Three Cheers For The K’s

You may hear people talking about the number of “K’s” a
computer has. They might say, “l have a 16K machine”; or
“You have to have a 32K computer to run this program”. “K” is
a way of showing how large the memory unit is, or how much
information the computer can remember at one time. The
letter K stands for thousand, just as the “K” in kilogram or
kilowatts. A computer that is 32K, for example, can remember
32,000 pieces, or bytes, of information at one time.

The exact number of pieces of information is actually counted
by multiples of 1024. The 1000 is just for convenience. Thus, a
computer with 32K memory has space for 32,768 pieces, or
bytes, of information.

Storing Information Outside The Computer

Often businesses need to save “data’” that won’t be needed for
awhile or that contains old records that must be saved. We do
that too when we save photos in an album or put our last year’s
income tax records in a file box in the attic or basement.
Computers can store information on punched cards, magnetic
tape, or disks. These “records” can then be stored away in
cabinets or files. By doing this, the computer’s memory can be
erased, making room for work that needs to be done now.
Storing records externally is sometimes called bulk storage,
since a great deal of information can be stored. This bulk
storage is much the same as information “stored” in the
books in a library or the LP’s in your record collection. Bulk
storage items can be pulled out of storage and the information
they contain can be fed back into the computer’s memory for
use anytime they are needed.

Control Unit

Once you “input” information into the computer, what
happens to it? Information may be sent several different
places depending on what needs to be done with it. Examples
include sending it to memory for storage, or sending it to that
part of the computer that does arithmetic, or combining it with
other information already in the computer to become part of a
picture on the screen. That part of the computer that decides
where each bit of information is sent is the important
CONTROL unit.

47

The CONTROL unit is very busy. It directs the movement of all
information through the computer, acting as the “traffic
director” like a policeman directing traffic at a highway
intersection. The control of the flow of information is
important, so that no data bumps into any other as it moves
through the computer circuits to its destination. Just as two
cars might be destroyed or damaged by a collision at an
intersection, information that “collides” with other
information may be destroyed.

\’\//))%)
f\\i\\\ e /))

= oRe
{ /

N
'NFORHAT[Formation |
q.ﬁ\;\ S \&a - [
y by,
(- |
A &
o .

\ \
7
(I {) é

The CONTROL unit also must remember exactly where each
bit of information has been sent, so that it can call back that
information when it is needed again. All information that is
stored in either the RAM or ROM memory is stored in a
particular place. This place is called the “address” and
identifies the location. The CONTROL unit remembers all
these addresses.

48

The ALU

Another busy and important part of your computer is the
Arithmetic Unit, which does all the math for the computer. All
information entered into the computer’'s ROM (for example,
numbers, letters, punctuation marks) is recorded using
numbers. You can see, therefore, how busy the Arithmetic Unit
is and how basic it is to the operation of the computer.

The Arithmetic Unit is often referred to as the ALU, which
stands for Arithmetic Logic Unit. The ALU has been “taught”
how to do all kinds of arithmetic problems. That is, special
instructions have been stored in the ROM memory that can be
called on at any time to instruct the ALU. Your TRS-80 is a
DIGITAL computer. Digital refers to numbers, as in a digital
clock or a digital thermometer.

All the “work” that the computer does is processed
by either the Control Unit, the Arithmetic Unit, or a
combination of these two. These two partners make
up the part of the computer called the CENTRAL
PROCESSING UNIT, or CPU.

Output

No matter how quickly a computer can follow instructions to
do a job,it would be useless if there were not a way to get the
information or solution from the computer. The equipment
used to retrieve this information so that you can see, hear,or
hold it is called OUTPUT EQUIPMENT.

Computers usually have a way to connect to a TV or monitor,
so that the operator will be able to see what is entered into the
computer as well as see the computer’s response. Reading the
information on the screen is the easiest way to get information
from the computer. The game pictures or the information

49

about your checkbook shows up on the screen. In this way, you
can see the information entered into the computer by a
cassette or a diskette.

If you want a written copy of the output from your computer,
you can also connect the computer to a printer to record the
information on paper. The printer may be a simple electric
typewriter which receives information from the computer and
automatically types it, or a high speed printer which is able to
print the information on paper at speeds as high as 1200 lines
a minute. These printers are also considered output
equipment. You can also store output information on magnetic
disks or tape, and on punched cards or tapes. Most INPUT
equipment can also be used as OUTPUT equipment as well.
Chapter 3 explains how to “save” information from your
computer’s memory on magnetic disks or tapes.

Now You Know

You now know how this marvelous machine works. It’s really
quite simple when you think of its five basic parts. The input
equipment, control unit, arithmetic unit, memory unit and
output equipment are all ready to work for you. Remember the
computer can’t think on its own. It must have information and
instructions from a person.

Crying Over Spilled Milk

The parts of your computer system do not take kindly to bits of
cookie, other food, drops of milk, or soda spilled on it.
Consider making it a rule that no one can eat or drink while
using the computer. An accidentally spilled drink could mean
many dollars worth of damage to the TRS-80’s insides.

51

Words of Wisdom

For carefree use in the care and feeding of the
TRS-80, review the following hints:

e Protect your diskettes from dust, heat,
and electrical appliances.

e |f you are using a Model |, turn off power
to the computer first when shutting
down.

e Keep food and beverage away from
your computer.

52

BEGINNING PROGRAMMING

Up to this point, you have given the TRS-80 its orders one at a
time. As soon as you press , the computer carries out
an instruction. You know a way to have the computer repeat
the same order many times. But what you haven’t learned yet
is how you can instruct the TRS-80 to carry out many orders
before coming back for more. That’s what people mean when
they talk about “computer programs.”

What is a Computer Program?

In this chapter, you will learn the first steps toward writing a
computer program. You will also learn ways to correct
mistakes in lines of your program without having to type them
over. A computer program is a set of instructions that the
computer will save until you tell it to execute (or, run) them. A
program can contain hundreds of instructions, all of which it
will follow without any further help on your part. So how do you
keep the computer from following orders as soon as you hit
[ENTER]? You do so by using line numbers. For example,
instead of typing the line

PRINT IS THIS WHAT THEY CALL PROGRAMMING?"’
you might type this one.
1@ PRINT *IS THIS WHAT THEY CALL PROGRAMMING?”’

You may not be terribly impressed, but you just wrote your first
computer program! Notice that the computer did nothing
when you pressed [ENTER|. That’s because it is waiting for
you to tell it to run the program. Pressing [ENTER]in this case
just tells the computer, “That’s all for line number 10.” To run
the program you simply type RUN. Go ahead, try it!

53

You may write and run longer programs in the same way. Each
line of a program has a line number. The computer will carry
out each line in numeric order. In other words, it will execute
the line with the lowest number first, then the next lowest, and
so on. There are several ways to have the computer go back
and repeat one or more lines and to only execute certain ones.
You will find more about these methods as you work later
exercises. For now, it is enough to practice writing very simple
programs that step from one line number to the next.

The Line Editor

Often you won’t have to wait until your program fails to
discover a mistake. You'll see it right away. If you wish, you
can just replace the entire line by typing it over—line number
and all. If you discover a line that you don’t need at all, just
type its line number and press [ENTER]. That will delete the
line.

But some lines need painstaking work to type in correctly. It is
annoying to have to type the entire line over when only one
character is wrong. That’s why a handy /ine editor comes with
your TRS-80. The line editor allows you to change an existing
line—to add or delete as many characters as you like, replace
one character with another, list the line, and so on.

Here are a few simple rules for editing. Since the best way to
learn is by doing, you should type each of the examples that
follow, so that you may see for yourself how the editing
commands work. Suppose you have a long PRINT statement,
such as the following.

30 PRINT “THERE IS NOTHIG WRONG WITH THIS LINE”

(Sometimes computers tell lies.) You notice that you left out
the second N in NOTHING and want to add it. Just type

EDIT 3p and press | ENTER

and the TRS-80 will respond with

3@.

The line number and cursor let you know that the line editor is
ready for your editing commands; in other words, it is in editor
mode. In editor mode, the computer treats certain letters you
type as commands. For example, typing the letter | means you
want to Insert one or more characters; typing D means you
want to Delete. The computer will ignore many letters typed in
this mode, because it doesn’t recognize them as commands.

** If you have not already entered line 30, then enter it and
type EDIT 30. As soon as the computer is ready for you to edit,
hold down the space bar. You will see that the cursor moves
along characters of your line until you let go. When the cursor
reaches the G of the word NOTHIG, release the space bar. To
move it one character forward, press the space bar; to move it
back one character, press the back arrow. When you insert a
character, it will always be above the cursor. Everything else
that was originally above the cursor and to the right will be
moved to the right.

55

Now type | to let the computer know you wish to Insert.

30 PRINT ** THERE IS NDTHI.

Type the letter you want—in this instance “N”—and press
ENTER|. The computer will print the entire line with the
added letter.

30 PRINT ** THERE IS NOTHING WRONG WITH THIS LINE”

But perhaps you really want to say, “THERE IS NOTHING
WRONG WITH THIS PROGRAM LINE®. Just type EDIT 30
again, move the cursor to the place you want to insert

PROGRAM, type | and PROGRAM. Then press[ENTER]. You
should see:

30 PRINT “THERE IS NOTHING WRONG WITH THIS PROGRAM LINE™

** Practice inserting more to your line. Insert THAT | CAN'T
FIX. after the word LINE.

Your procedure goes like this:

Type EDIT 30.

Run the cursor to the ending quotation mark.
Type I.

Press the space bar once. (Do you know why?)
Type THAT | CAN'T FIX.

Press [ENTER|.

If everything went right, your line looks like this:

SN~

30 PRINT “THERE IS NOTHING WRONG WITH THIS PROGRAM LINE
THAT | CAN'T FIX.”

56

To Delete a character, move the cursor over to it and type D. To
delete more than one character, type the number you want to
delete (starting with the one where the cursor is) and then type
D.

** Type and | ENTER| the following line.

5@ PRINT “THERE IS SOMETHING ROTTENNN IN DENMARK.”

Now type EDIT 50. To get rid of the extra N’s, use the space bar
to move the cursor to the second N and type 2D . What you
will see is

50 PRINT “THERE IS SOMETHING ROTTEN!NN! -

No, the computer hasn’t added the exclamation points to your
line! It is simply showing you which characters it removed by
printing them between exclamation marks. Now press

[ENTER]and your line will read:
50 PRINT *“THERE IS SOMETHING ROTTEN!NN! IN DENMARK."’
Now type RUN and your line will read:
THERE IS SOMETHING ROTTEN IN DENMARK.

In a similar way, you can Change characters. Typing C will tell
the computer,“Change the character over the cursor to the one
I type next.” If you want to change three characters, type 3C,
followed by three new characters.

THERE s
SOMETHING
ROTTEN |IN
DENMARK.,

57

Below is a table of the editor commands.

Editing Commands

EDIT x

(space)

shift- ¢

[ENTER]

Edit line number x. (Places the computer in
edit mode and positions the cursor in front of
the first character.)

Move cursor along line.

Insert character(s).

Delete character(s); use xD to delete x
characters, unless x is one.

Change character(s); use xC to change x
characters, unless x is one.

List line without changing anything.

Extend the line.

Drop (Hack) off all characters from the cursor
and beyond. (You may then add new
characters if you want to.)

Cancel any changes and begin editing Again.

End this editing command and wait for the
next one.

Exit editing mode and store the changes
made.

58

Listing Program Lines

Ve
s
Wwaivien e
Witvive
\uu.-‘..,,“_
Mg oty me
MLy
AL AL e
Sattiag
WMLLL Boe Mg g m

L e PO

g 2 T o Vf \ X
ay | N
— \-l‘u.n’o»' ol i B

Just in case you forget which lines you have in your program,
you can have the computer print them for you. Simply type
LIST to see all the lines of your program. Watch out, though! If
your program is long, it will print all the lines and “scroll” them
right off the screen—far faster than you can read them. There
are several ways to view only part of your program. One way is

to halt the printing every few lines by pressing [SHIFT .
To continue, just press [ENTER].

You can also look at a small part of a long program by typing a

range of line numbers you want. For example, if you want to
see lines 100 through 230, type

LIST 100-23p

If you want to list just line 230, type

LIST 230

59

Error Messages

One last item before you begin programming! Just in case
you miss an error in one of your program’s lines (line 50, for
example), the computer will tell you as soon as it finds the
mistake. Your TRS-80 will stop everything and wait for you to
correct the offending line. In fact, it will automatically place
itself in editor mode at the line with the mistake, printing,

?SN ERROR IN 50
READY

5@.

As you learned in the line editor exercises, the TRS-80 will
happily print strings containing misspelled words or nonsense.
Computers are not so happy with wrong or misspelled BASIC
commands and punctuation, however. LSIT seems to be a
popular blunder among programmers. Other common syntax
errors, as these mistakes are called, include typing periods
instead of commas, and forgetting quotation marks. You will
without doubt make a variety of such errors as you write
computer programs—everyone does.

When you run a program with an error in it, the BASIC
interpreter (a program that translates your instructions for the
machine) will halt execution and inform you of which error you
have made and the offending line number. Just make whatever
change you need to, following the editing directions and press

ENTER|. Your program is then ready for another try at
running.

Writing Programs

It's time to start writing real programs now! First, there is a
handy BASIC command you should know about. One of the
really fun things about programming is getting different
results (called output) from different information that you give
a program (called input). You already know about one kind of

60

input. This is the information you give the computer at the time
you write the program, using variables and PRINT statements.
The only problem with that kind of information is that, except
for calculations your program makes, you can’t change it—
until you change the program.

There is another kind of input that lets you enter information
into a program while it is running. In fact, the program will
refuse to do anything further until you enter that information!

You tell the computer to expect such an entry with the INPUT
statement. Much as assignment statements, INPUT
statements also use variables. For instance, suppose you have
the following lines.

20 INPUT AS,B
30 PRINT A$;B

When you RUN your program, the computer will halt as soon
as it comes to line 20 and display

?

61

This means that you are to type a string of characters and then
a number, since A$ is a string variable and B is a numeric
variable. So you might type

? LIFE BEGINS AT |[ENTER
?? 60 |[ENTER

And the program will continue on its merry way. The double
question mark (??) means that the computer has gotten some
of the input it expects, but is not yet completely satisfied.You
could, if you wanted, enter both values on the same line, since
that’s how your INPUT statement is set up. All you need to do
is type

? LIFE BEGINS AT .60 |[ENTER

The comma tells the computer, “That’s all for AS$; the next
thing | enter will be the value of B.” Once you have entered both
values, the computer will execute line 30, which should print

LIFE BEGINS AT 60

Either way you entered it, when you typed in the input, the
program stored LIFE BEGINS AT in A$ and 60 in B. The
computer can go ahead and use these variable values just as
though you had assigned them when you wrote the program.

Suppose you entered, instead,

? LIFE BEGINS AT ,AN EARLY AGE [ENTER

The computer wouldn’t be too happy with AN EARLY AGE as
the value for the numeric variable B. That is just what you
attempted to give it! So, you will see a message

?REDO
62

?REDO means that you have to enter both values again—for
A$ and B. The computer will patiently give you as many
chances as you need to do it correctly.

** Here is a fun exercise that will illustrate how the INPUT
statement can be used inside a loop. Recall from Chapter 1
that a loop is written with the following set of BASIC
statements:

FORN = 1 TO 10: (Statements to be executed each time) :NEXT N

You can use loops quite effectively in programs with line
numbers. Try the following program, which will loop 10 times,
each time expecting two string INPUTs and printing the
results.

10 PRINT “TYPE A FRIEND'S NAME, THEN A KIND OF FOOD.”
20 FORN = 1 TO 10

30 INPUT X$,Y$

40 PRINT X$;" EATS "';Y$

50 NEXT N

(Note the spaces on either side of “EATS”.)

The results should be amusing, when the computer prints such
statements as

ANNIE EATS BEANS
FRANK EATS WAFFLES

and so forth.

A Customized Story Program

** Here’s a fun activity that you can play with your friends.
Before you start, however, you must tell the computer that you
are finished with the last program and wish to erase it from
‘memory. You can turn the computer off and on again which
would wipe any earlier program out of its memory, or you can
type NEW and press [ENTER]. Now the computer knows that
you’re doing something new. Anytime you type NEW and press
[ENTER], it clears the program in the RAM memory of the
computer. When your friends run your program, they will be
asked to enter information; but they won’t know how that
information will be used until after it has been typed in. You
may type in the program shown here—or, you can make one
up. You know enough by now to do a Iot of experimenting on
your own! The following is a listing of the INPUT portion of the
program.

NEW

3 PRINT “TYPE THE FOLLOWING:"’
1@ INPUT ““A FRIEND’'S NAME’*:N$
20 INPUT ““A NUMBER'':X

30 INPUT “A TOWN”;T$

40 INPUT “A LIVING THING”;L$
50 INPUT ““A KIND OF FISH"";F$

When your program reaches the first of these INPUT
statements, it will halt and print

A FRIEND'S NAME?

and so forth. The computer will print the strings that you
entered in front of the question marks, just as though you
combined a PRINT and an INPUT statement into one. That
way, your friend will know just what kind of input is expected
each time. Besides, it's much more pleasant to see the
question, A KIND OF FISH?, than a bare guestion mark.

64

(Putting helps like these into your program is one way of being
“user-friendly,” as people who work a lot with computers say.)

Now type in the part of your program that will use the input
your friend enters. Before you print anything, though, you will
probably want to clear the screen. “How can | have the
computer press the “Clear” key in the middle of my program?”’
you might ask. To clear the screen while a program runs, use
the simple command CLS. The remainder of the sample
program for the activity is printed below.

10P CLS: PRINT “THERE WAS ONCE A CLOWN NAMED **;N$;".""1

110 PRINT N$; ** WAS A REAL FLOP AT THE CIRCUS. NOBODY
LAUGHED!™

120 PRINT ““ONE DAY THE OWNER SAID, * " : N$; " YOU JUST
AREN'T FUNNY! YOU'VE GOT TO GO.”

130 PRINT X;"" PEOPLE WALKED OUT OF THE SHOW LAST NIGHTI

140 PRINT S0 "";N$; " SADLY PACKED UP AND TRUDGED ALL THE
WAY TO ;78"

150 PRINT NS$;"* SAT DOWN AND CRIED AND CRIED. A NOISE MADE
";N$; ' LOOK UP."

160 PRINT "“THERE STOOD A BEAUTIFUL **;L8; ", LAUGHING. SHE
EXPLAINED THAT "";N$;‘“ 'S TEARS HAD FILLED THE LAKE AND
SAVED THE TOWN'S RARE TROPICAL " ;F&;"."”

17@ PRINT ““NOW THEY WOULD ALL BE RICH! ";N$; ** MARRIED
THE "";L$;**, AND THEY ALL LIVED HAPPILY EVER AFTER.”

18P PRINT ““MORAL: SUCCESS IS NO LAUGHING MATTER!"

The best part about a program like the one above is that your
friend won’t know how the INPUT information will be used until
after it’s entered! It is a special surprise to see one’s best
friend’s name printed on the screen in a story, for example. It
makes the computer seem to know more than it does. As you
know, the computer is “just following orders.”

1 Don't forget, if you want to end your sentence with a period, you will have to tell BASIC to do it.

65

Testing a Program

Before you try your program on a friend, you should test it
yourself and make sure it works right. You’re almost sure to
find that you have left out a space, so that two print strings are
jammed together. Or you might discover that the person run-
ning your program may get confused over just what is
expected. Then too, chances are that you made some error in
typing the program, no matter how careful you were. Don’t
worry. BASIC will tell you just what line an error is in, as
described earlier. You, on the other hand, are the best judge of
whether the program is easy to use and understand.

The following section will explain how you can store programs,
so that you need type them only once. As your programs
become longer and more complicated, you will appreciate
being able to do so. While your program is still in memory, read
completely through the instructions for program storage and
then follow the steps.

Storing a Program

If you like the program, you may want to save it for another
time. You can easily do so with a cassette or a disk drive. If you
have a cassette recorder, here is what you do.

Cassette Program Storage

1. Load the cassette you are using into the machine and
position it where you wish to begin recording.

2. Set the cassette volume control in the middle (at about 4).

3. Press the Record and Play buttons on the recorder at the
same time. Then type

CSAVE"P"
66

(The “P” tells the computer that P is the name you want to give
your program. Actually, you may give it any one-letter name
you wish.)

Later, when you want to load program P from the recorder, just
follow these steps.

1. Press the Play button on the recorder.
2. Type
CLOAD"P”

The computer will search through the tape until it finds
program P, and then load it into the computer’s memory. Your
program should be back and ready to run—or edit.

Disk Drive Program Storage

If yours is a disk drive system, you already have access to disk
storage, since you are using Disk BASIC. You may name your
program anything you like. In the examples that follow, we will
use the name “GAME”. To store your program on a flexible
diskette, make sure you have a diskette you are willing to use
in the proper disk drive. Make sure there is no write-protect
sticker on the diskette your program is to be stored on.

1. If you have only one drive or wish to save your program on
the system diskette in Drive 0, just type
SAVE “GAME"”

2. If you have more than one drive and wish to save the
program on a diskette in Drive 1, type the following:

SAVE "“"GAME: 1"

67

A system diskette must be in Drive 0 at all times, whether you
store your program on it or on a diskette in another drive. Don’t
forget the quotes; BASIC can’t understand your file name if
you don’t. If you want to load the program later, type

LOAD ""GAME” if your program is on the system diskette
in Drive O, or

LOAD ““GAME:1"" if your program is on a diskette in Drive 1.

Something important to know, whichever system you have, is
the following: If you are working on a program and then type
LOAD or CLOAD and the name of another program you have
stored, the computer will load the program you asked for and
wipe out the one you were just working on! To avoid losing
your program then, SAVE any program you are working on
before you LOAD another one.

You now know how to create, edit and store simple computer
programs. The following two chapters will teach you ways you
can greatly increase your power to write interesting and
enjoyable programs.

68

GETTING YOUR
PROGRAM ORGANIZED

In Chapter 1 you learned about a /oop. You found that you
could get a lot of work out of the computer with a fairly short
instruction. Loops are especially useful in programs with line
numbers. There is no limit to how complicated your program
instructions can become using loops and other programming
“tricks.” Ah, but there’s a catch! The more complicated your
program becomes, the harder it will be to keep it organized,
easy to understand, and “bug” free. You could just experiment
with a program until it appears to work right. But experimenting
can take a lot of your time. It also isn’t as much fun as running
a program that works!

For this reason, this chapter will teach you all the basic steps
needed to write a well-organized program: creating an
algorithm, making a flowchart, and—once the program has
been written —debugging. In the process, you will also learn
more ways to use loops. The best way to become familiar with
the basic programming steps is to work through an exercise,
performing each one as you go.

More with Graphics

It’'s quite easy to create ‘“bugs” you don’t want—that is,
program-errors. In the exercise that follows, you will create a
friendlier “bug,” a picture that will print wherever you wish on
the screen. This will be a graphics exercise, so you will be using
the special graphics characters you first used in Chapter 1.

First, though, how would you go about creating a picture of a
“bug” on the screen? How would you know your program was
put together as well as possible? How could you save time in
locating errors? An algorithm will help you answer these
questions.

69

Algorithms

The word “algorithm” is just a fancy term for a “how to do it”
set of instructions. It is a very important word in programming,
however. What you need to know to write a program can be
stated basically as follows.

* What is the purpose of the program?

* What information do you need to write the program?

* What values change often while the steps are carried out?
* What values don’t change at all?

¢ What step should be done first, then next, and so on?

* Which steps are repeated several times, and which ones
don’t repeat?

For the current exercise, you already know some of the
answers to these questions. The program is supposed to print
a bug somewhere on the screen. The needed information
includes which graphics characters you want to use for the
picture, the order in which they should be printed and their
character numbers. But is that all you need to know?

First, it would be nice to be able to print your bug at different
places on‘the screen (a moveable “beast”?) without having to
change your program each time. That means that you will need
to use variables in your PRINT@ statements. You must plan
then, a general PRINT@ statement (or a set of them).
Remember that there are 64 characters per row? Using that
fact, you can print on different rows with a statement such as
the following.

PRINT@64*X, ““STUFF TO PRINT”

where X is a variable that is from 0 through 15. You can print on

70

any column in that row with another variable Y, where Y may
range from 0 through 63.’

PRINT@64*X+Y, “STUFF TO PRINT"

Adding Y to 64* X will cause printing to start at column Y of row
X. For example, if X=10 and Y =15, printing will begin at
position 640 + 15, or 655.

Program Steps

Now you have the information you need for your algorithm.
Let’s write down the steps your program should carry out.

1. Make a sketch of the bug you wish to create. (Use a TRS-80
Video Display Worksheet.)

2. Figure out which graphics characters should be printed in
the first row, since the bug will print on a portion of several
rows on the screen. (You did want a big bug, didn’t you?)

3. Figure out which characters go on the other rows.

4. Assign values for X and Y, for the row and column where
you want to start printing the bug.

5. Write your PRINT@ statements, in the order of the rows to
be printed. The second row should be X+ 1, and the third
row should be X+ 2. Y’s value should remain constant.

Now check your algorithm to make sure of the following:
® The instructions didn’t leave out any important steps;

® There is a definite beginning and ending point to the
program;

e All the input information is there, and you know all the
output that you expect from your program.

1 You will often find, as you work with computers, that you begin counting with 0, rather
than 1. For this reason, each row of 64 characters is numbered from 0 to 63.

71

Making a Flowchart

In the computer world, as elsewhere, “a picture is worth a
thousand words.” For this reason, flowcharts were invented. A
flowchart is a diagram of how your program steps are to be
carried out. Certain symbols are employed, a few of which will
be described below. Creating a flowchart before you program
will provide you with a clear idea of the order of steps to be
performed. A flowchart will also serve as an aid during the
debugging process. As you mentally step through the
program’s execution, you can compare each line with your
flowchart, making sure each line performs as expected.

The following is a brief explanation of the flowchart symbols
for program steps you are already familiar with. Chapter 5 will
present additional flowchart symbols that go with the new
programming tools you will learn there.

m BEGIN and END

A clear flowchart shows the beginning
and end of the program. The words
PRSI%ngéNG BEGIN and END commonly appear in

ovals on the flowchart, as shown here.
In between these, the program steps
should generally be represented in
order, from top to bottom.

Fundamental Operations

A fundamental operation is a simple
step for the computer to perform; it is

ASSIGN VALUE represented on the flowchart by a box.

TOoX Fundamental operations include

Y assignment and INPUT statements,

PRINT CURRENT and PRINT statements. The arrows

X VALUE indicate the order in which steps are
executed.

72

Loops

Loops are represented by an arrow that
points to a previous program step. The
loop in the diagram to the left
corresponds to the following BASIC

lines:
| FORN =1 To1o1-—-——-
20 PRINT “‘| REPEAT"
30 NEXT N

PRINT “I REPEAT” |

As soon as the loop has executed 10
times, the program will go on to the
next step, as shown by the down-
pointing arrow.

For practice, you should flowchart the algorithm for your bug
program. A sample flowchart is shown below.

SET VALUES OF
X ANDY

Y

| PRINT 1ST ROW |

PRINT 2ND,
3RD ROWS

73

Writing the Program

Now that you have reviewed what steps to follow, let’s write
the program. How do you go about doing the first step? Take a
look at page 125,which lists the graphics characters and their
corresponding numbers. Notice that each character is
composed of a grid that is divided into six parts.

The different characters are the result of different shading
combinations in the grid. For instance, character 168, shown
here,

has two of the little rectangles shaded in. Character 128 has
none, while character 191 has all six of the rectangles shaded.

An important first step in making a picture that looks the way
you intend it to is to sketch it first. Your reference manual
contains a worksheet that shows the rows, columns, and grids
that match the characters. Make several copies of the work-
sheet, so that you can experiment with your sketch until it is
just the way you want. Your last sketch should be one that
follows the exact grid outlines. That way, you will know just
which characters you should print, and the order in which to

74

Al
E
J

4

i

|
H
}
N
+H
i
"

¥

i

!
44
!
}
i
i

S S B S Al sees sl o s i s o t B .

i
!

3 -4 A SR &

|
. 6 columns}|

o] + +

75

e |

Columns

+ 441+
44
|
l
SRSNENED
P44
b

T
|
i

7 18] 9ro[11]12[13[1a]15]16] 17]18] 19]20]21]22]23]24]25]26]27] 28] 29]30]31]3
9}0!i1
T

2] ;1?]5 €
7]slo

1

32
3
4
5
36
7
38
39

1]
8
|24
‘28] .
2
2

[0

print them. A sample “bug” sketch is shown below. You can
ROWS ||, |ols}s)s

o |

1

2

3

4 130*

5

make yours the same or entirely different.

Notice that the bottom row starts one character sooner than
the first two. In order to be able to print your bug wherever you
wish on the screen, it will help to have each row the same
width. To do this, fill in the first character in rows one and two
with the blank character, number 128. The second character in
row 1 requires a shading pattern like this one.

As you look through the “cast of characters,” you find that
character 137 is the one you want. Just follow this method
until you locate each of the six characters in the first row. Your
first PRINT@ statement should print the six characters, one
after the other. (Recall that you indicate character 137 with

CHR$(137)

in your PRINT@ statement.)

The second and third rows can be put together in the same
way. Keep in mind that the first column you use to begin the
first row should match the first column of the other rows; that
is, Y should remain constant. Otherwise, you will have pieces
of your poor bug all over the screen! The X value you set
should be the starting row. The second row, then, would be
X+ 1, and so forth. Here is a copy of the program you should
end up with.

10DX = 4Y = 20

11D PRINT@64*X + Y,CHR$(128); CHR$(137);CHRS$(144);
CHR3$(16();CHR$(134);CHRS(128);

120 PRINT@84*(X + 1) + Y,CHR$(128);CHR$(183);CHRS$(191);
CHR$(191);CHR$(187);CHRS(128);

13D PRINT@64*(X + 2) + Y,CHR$(168); CHR$(140);CHR$(159);
CHR$(175);CHR$(140);CHRS(148);

14D END

76

Let’s run through the program.

Line 100 start your first row of graphics characters at row 4
and column 20.

Line 110 print six graphics characters right in a row starting
at location 276.
i.e.,64*4 +20

20 21 2
o @ E

Line 120 print six graphics characters right in a row starting
at location 340.
i.e.,64*(4+1)+20

Columns
2 23 24 25

Line 130 Print six graphics characters right in a row starting
at location 404.
i.e.,64*(4+2)+20

Line 140 ends the program

Voila! You have a new friend! But don’t stop there. All you need
to do to print your bug in different places is to change the
values of X and Y. Try doing this with an INPUT statement. For
example, you can change line 100 to

100 INPUT ""“ROW,COLUMN"; XY

Then each time you run your program, you can enter the
starting row and column without changing a program line each
time. Before you proceed further, you should SAVE your
program. If someone were to trip over the power cord, all your
efforts would be lost! A good habit to get into is to SAVE
programs frequently, in case of accident or power failure.
Doing so doesn’t affect what is in memory; it merely stores the
current version of your program.

77

Loop Nesting

Suppose your bug is lonely for company. You could write the
same few lines over and over with different values of X and Y
and then run the whole program. You probably wouldn’t want
to, though, since considerable effort goes into typing a
PRINT@ statement for six graphics characters. That’s where
the power of the /oop comes in handy. Remember that your
bug is six characters wide? If you want an entire row of bugs to
print in a loop, you can’t simply use Y as the loop index. (The
loop index, you recall,’is the variable that the computer uses to
keep track of the loop count.) This is because Y will normally
increase by only one (programmers call this incrementing)
each time through the loop. You want it to increase by six each
time, as the following picture shows, so that each new bug
doesn’t overprint the preceding one.

T !
Y=24 30 36 42 1,148 1154
X ot : ‘\n [~ ‘ y
1st 2nd +t MK :
Time Time77]7] etc ; 1
} ; : - L
aEatanas
i f ‘
L @ ; i
: : it -
]
HRARINY e : 1
sl L 111N i]
I %
L L
i 1 ; i il i 1 -
H r T f t 1

78

There is a handy way to increase your loop index by any
number you want each time. With the STEP instruction, you
can have the computer take any size STEP you wish.
Remember the basic loop format?

1PPFORY = P TO 58

140 NEXT Y

(That’s right, the loop index can begin with zero!) To the basic
loop format, add a new part, called STEP as follows.

1PPFORY = P TO 58 STEP B

140 NEXT Y

The first time through the loop, Y’s value will be 0. The next
time around, its value will be 6, the next time 12, and so on. As
with any other loop, each time the computer performs the loop,
it checks Y’s value against the ending value you set. In the
example above, the computer checks to see if Y is 60 or more.
As soon as it is, the loop is finished and the program
continues.

A Bug that STEPs

** Try the STEP instruction above with your program. Simply
“sandwich” the lines that print your characters between the
instructions that control a loop, like this.

1PP CLS:X = 7:FORY = P TO 59 STEP 6

110 PRINT@84*X + Y,CHR$(128) ;CHR$(137);CHRS$(144);
CHR$(16@);CHR$(1 34);CHRS(128);

12p PRINT@64*(X + 1) + Y,CHR$(128); CHR$(183);CHRS(191);
CHR$(191);CHR$(187);CHR$(128);

13P PRINT@64*(X +2) + Y,CHR$(168); CHR$(140);CHRS(159);
CHR$(175);CHR$(140);CHRS(148);

140 NEXT Y

20p END

** Now figure out on your own how you would use the STEP
instruction to print a column of bugs, rather than a row. (Hint: X
is the row variable, and each bug takes up three rows; there are
16 rows on the whole screen.)

Experiment with the STEP function. You may start a loop index
from any value you want, not just 0. Of course, the TRS-80
won’t like being asked to print a bug at position 64*X if X has a
large value like 36! This is because 64 times 36 is 2304, and
there are only 1024 valid places to print on the screen.

80

You may also start your loop with a large number and end with
a small one, thus printing in a reverse direction on the screen.
To do this, you just use a negative STEP value. Try replacing
line 100 in the “Bug that STEPs” program with the following
one and see what happens.

1P X = 7:FORY = 53 TO @ STEP -6

In this instance Y is 59 at the start of the loop; the next time
around, it is 53, and so on. And just in case you were
wondering. . . Yes, the following two statements do exactly the
same thing!

1PFORY = PTO 59
and

1PFORY = @ TO 59 STEP 1

Nested Loops

Still not enough bugs in your program? How about a whole
screen full? Once you understand how to do this, you will have
a programming tool that you can use for countless other
programs. You have already made a row and a column of bugs
print on the screen. Now you will merely combine these by
placing one loop (for instance, the one controlling the column)
inside another! This is called loop nesting, since the outer loop
makes a “nest” for the inner one. Nested loops can be
represented on a flow chart as follows.

T

\

=

81

** Each time the outer loop repeats once, the inner loop
executes completely. Try the following program to see how
this works. This program will print several rows of stars
(asterisks) on the screen. Variable T determines the row, and J
determines the column.

5CLS

> 1PFORT = 1 TO 10

~> 2PFORJ = 6TO 9
30 PRINT@B4*T+J,"*";

| T 4P NEXTJ

_ BPNEXTT

When you run this program, you will see how the J values run
from 6 to 9 every time the T value changes by one. Notice that
the NEXT J comes before the NEXT T. You wouldn’t want the J
to fall out of its nest! The same applies to three or even more
nested loops. The computer will always try to match the last
FOR instruction it found with the first NEXT instruction it runs
into. If it finds a different loop index than it expected, it will
complain with an error message and halt execution.

A Screenful of Bugs

** Let’s try the new trick with our bug friends. Try the
following replacements in your “Bug that STEPs” program.

1PP CLS:FORX = PTO13 STEP 3: FORY = PTO 59 STEP B
140 NEXT Y: NEXT X

82

Debugging

How did your screen look after running the last program?
Whether your program worked or not—you will eventually
need a few ‘“debugging” tips. Before you do anything else,
stop and think through the steps of your algorithm. That will
often clear up many problems. Second, give the program lines
a careful looking over. Sometimes the hardest bugs to find
are the ones that are simple typing errors.

But suppose you have already done all that and the program
still does not work? You know that—even if the program
doesn’t run—your BASIC grammar is okay. Otherwise, the
computer would tell you where it hurt. The problem, then,
must be a logic error. In other words, your thinking process is
confused at some point. Usually, it is something fairly simple,
such as doing Step 3 when you should do Step 4 first, for
example. It might on the other hand, be something a little
harder to spot, such as getting mixed up on which variable is
used for which item.

Debugging is an entire art in itself when one works with large
and complicated programs. Since the programs you write
with the aid of this book are very simple ones, the following is
a handy list of general rules to follow.

e Make sure you have a list of all the variables you use. Tell
how each is used and, if needed, its location within your
program.

e Make sure your program follows the algorithm you wrote. it
is quite possible that your concept of the program changed
as you got into writing it. It saves time to go back and change
your algorithm to fit the new method of solving your problem.
By stating the idea in simple terms in an algorithm, you might
see how your thinking became confused and be able to fix the
program quickly.

83

e Do a “walk-through” of your program. Pretend you are the
BASIC interpreter and start working the lines one by one.
When you come to a loop, keep track of the loop index and
loop back. If any calculation is to be made inside the loop,
figure out what it should be and jot down the new value. In
other words, pretend you are a very slow but wily computer,
and see whether values are being changed when they should
not be, or whether a line of code is inside a loop that should
be outside of it, etc.

e |t often helps to check the value of some variable before
another part of the program changes it. You can place a
temporary instruction in your program that will halt
execution; once it stops, you may ask the computer to print
the current value of as many variables as you like. You halt
execution with the STOP instruction. When BASIC comes to
the STOP command, that is just what it does.

Temporary instructions, such as the STOP command
described above, provide an important debugging tool. The
followingexample illustrates how youmight use a STOP state-
ment for debugging. Suppose you were writing a program to
print multiples of 7. You used K for a loop index in your
program and set | equal to 7, as shown here.

20 REM ***EXAMPLE OF A PROGRAM
25 REM *** THAT WON'T WORK!

501 =7

BOFORK = 1TO 25

e (The dots just stand for lines that

® don’t relate to the current problem.)
9P K = K*7

100 PRINT |

125 NEXT K

You find that—even though your ioop should repeat 25 times—
the loop ends after only two times through. Not only that, the
computer prints 7 each time, instead of 7, 14, 21, et¢. You may

84

add a temporary line 120, as follows, in order to print the
current values of K and I.

120 STOP

As soon as the program reaches line 120 during execution, it
will dutifully STOP and state,

READY

Then you can take a look at the values of K and |. Do this just
as you did at the beginning of the book—without line numbers.

PRINT K,I |ENTER

If your program worked correctly, the value of K would be 1,
since the program was instructed to STOP the first time
through the loop. Instead, you discover that K’s value is 7. You
then look more carefully at line 90

9P K = K*7

There’s your bug! You set | = 7 before coming into the loop.
Then in line 90, you type K = K* 7 instead of | = K* 7, as you
intended. Since you were changing the value of K, instead of
letting the loop increment it, the loop ended early. Once you
have found the error and made the correction, be sure to edit
out the STOP, so your program will run normally.

You may find it helpful to add a temporary PRINT statement to
your program, so that you may view values as the program
- executes. For instance, in the above example, you could have
added a line

120 PRINT K

so that K’s value as well as that of | would be printed each time
through the loop. That way, you could watch the values change

85

and not interrupt the program. If the program executes too
quickly for you to see the changing variable values, here is yet
another handy temporary instruction: Remember that the com-
puter will wait for you to make an entry when it encounters an
INPUT statement. Thus, along with the temporary PRINT
statement in the above example, you may add an INPUT
instruction, as follows.

120 PRINT K:INPUT A$

Each time through the loop, the program will print the value of
K and then wait for input from you. As soon as you see what
K’s current value is, you may then press any key (besides the

special keys). Then press | ENTER| and the program will con-
tinue.

One further use of temporary program lines deserves mention-
ing. Suppose your program is becoming long and complicated.
You aren’t sure whether BASIC even gets to a few lines of it.
Just to see whether it reaches the section in question, try
inserting a temporary PRINT statement in that section. Have
the output appear somewhere on the screen where you will
notice it, such as the lower righthand corner.

335 PRINT@ 1019, “*OKAY HERE!”

If you don’t see the message “OKAY HERE!” appear, you can
be certain the program never got to the section in question.

The programming process has only been briefly outlined in
this chapter. If you make a habit of following the important
steps in that process—writing an algorithm, making a flow-
chart, and carefully debugging the completed program—you
will find programming much easier and enjoyable. Of course,
the greatest teacher is experience!

86

PROGRAMMING CONTINUED

In Chapter 4 you learned several ways to make your TRS-80
loop. There are a number of other means of changing the order
in which program lines execute. In this chapter you will learn
about three of these ways: the GOTO statement, the selection
structure, and the subroutine.

The GOTO Statement

The GOTO statement is really quite simple. Whenever the
computer comes across an instruction such as

15 GOTO 65

it will ignore lines between 15 and 65 and jump to line 65,
carrying out any instructions it finds there. It will then continue
executing any lines that follow 65. You can even use the GOTO
statement to loop back to a previous line. That fact deserves a
note of caution! The GOTO statement has a poor reputation
among many programmers, because it is so easy to use GOTO
to write carelessly constructed programs. Look at the
following program.

10 PRINT IS THERE ANY WAY OUT OF THIS?”
20 GOTO 1D

Before you read on, try to guess what will happen when you
run this program. That’s right! The TRS-80 will tirelessly print
“IS THERE ANY WAY OUT OF THIS?” over and over, because
line 20 repeatedly sends execution back to line 10. The
program above is an example of an infinite loop, because the
program will keep running forever unless it is interrupted.
Programmers must always be careful to avoid an infinite loop,
since the computer will never be able to complete a program
that contains one. An unintended infinite loop is only one

87

example of ways you can “lose control” of your program.

Fortunately, there is a way to halt infinite loops. In fact, some
programs are written intentionally as infinite loops! Some

action will be repeated continually until the user halts

execution. To stop an infinite loop, just press the key,
and the computer will stop the program and return to the
BASIC command mode; that is, it will be ready for you to
change lines in your program.

GOTO can, however, be quite useful. Just be sure to keep track
of where you are sending program execution, and how the
program will end. The exercises in this chapter will illustrate
some of the uses of the GOTO statement.

88

Selection

One of the most powerful programming tools you can use is
having the computer make decisions. Suppose you only want
to run part of your program if certain conditions are true. If
those same conditions are false, then you might want to
simply skip that part or run another part of the program. That is
why this program structure is called selection, since the
computer chooses only certain parts of the program for execu-
tion. The diagram below shows how decisions are represented
on flowcharts.

IS THE >
CONDITION
TRUE

YES

Unlike the flowchart symbols introduced in Chapter 4, the
symbol for a decision has one entrance and two exits. The
program will take one path if the stated condition is true, and
the other path if the condition is false. You can easily program
the TRS-80 to make decisions. But does that mean your com-
puter is pretty smart after all? Not at all. As usual, the
computer merely does exactly what you tell it to do.

But do you know just what you’re telling the computer to do?
Remember, every order you give the computer is changed into
1’s and 0’s. That means that it can easily make yes-or-no
decisions—a ““yes” answer is 1 and a “no” answer is 0. (The

89

computer can’t handle an answer of “maybe”!) Let’s take a
closer look at what is involved in each computer decision. The
computer can compare one variable value with another; it can
also compare strings. If two strings are just alike, then the
computer considers them equal. They are either equal or not
equal, period. With numbers, though, there are always three
possibilities: one number is either equal to, less than, or
greater than another number. That is, “not equal” means one
number is either larger or smaller than the other. It is important
to keep this in mind when you write a program that makes
decisions about numbers.

The BASIC instructions for making a decision are as follows.
IF (condition) THEN (orders to follow if condition is true)

If you have a decision to make, you might say to yourself, “If
our team won more than eight games, then we are great!” If
you wanted to say the same thing in BASIC, you might type

IF WINS > 8 THEN TEAM$ = "GREAT!"

This would tell the computer, “Check the variable named
WINS. If its value is greater than 8, then our team (represented
by string variable TEAMS$) is GREAT! If your team won fewer
than eight games or if it won exactly eight games, then the rest
of the statement is ignored. These last two conditions are
called the complement of the condition that the computer is
checking. In other words, the complement of “greater than” is
“equal to or less than.”

90

The following is a table that shows each symbol that BASIC
uses to make decisions. Next to each symbol is its complement.

Condition Symbol Complement Symbol

equal = not equal <>

not equal <> equal =

greater than > less than or <=
equal to

less than < greater than or >=
equal to

greater than or >= less than <

equal to

less than or <= greater than >

equal to

The example used earlier could be expressed either of two
ways. One way would be

TEAMS =
“GREAT!”

and the matching BASIC statement would be, as you already
saw,
IF WINS > B THEN TEAMS$ = "‘GREAT!”

91

You could say basically the same thing by using the
complement of “WINS > 8”.

_| TEAMS =
“NOTGREAT!”

The corresponding BASIC expression would be

IF WINS < =8 THEN TEAMS$ = “NOT GREAT!”

You can create several instructions for the computer to carry
cut if the condition is true. Just use a colon to separate them.
For instance, the following is a good example of an
IF...THEN statement.

1PIFX = YTHEN Z = Z + 1: PRINT “KEEP IT UP!"": GOTO 50

When the computer reaches line 10 and finds that X does
equal Y, it will increment Z, print a message, and GO TO line
50. One of the ways GOTO can best be used is in IF...THEN
statements. The above could be written simply

10 IF X = Y THEN GOTO 50

At line 50 you would have all the instructions you want
performed if the condition is true.

5072 = Z + 1
B0 PRINT “KEEP IT UP!"”
70 (other instructions)

92

Make sure, however, that you don’t allow the computer to
execute lines 50 and 60 if the condition is not true. If, for
example, X is not equal to Y, then the computer will execute
the line following line 10. If you don’t want it to simply step
around to line 50, you must put an instruction before line 50 to
make it go around. A sample way to do this is as follows.

1M IFX = Y THEN GOTO 50

20 PRINT ** THIS IS A FILLER LINE"
30 GOTO 70

502 =272 + 1

60 PRINT “KEEP IT UP!™

7@ (other instructions)

** As a very simple example of how a program might use a
decision, consider how the TRS-80 might make a date. It could
ask each user whether he or she were a machine, and print a
reply based on the user’s response. The following lines show
how this may be done.

10 PRINT ““HI! ARE YOU A MACHINE? (TYPE ‘YES’ OR ‘NO’)”

20 INPUT AS

3D IFAS = “YES" THEN PRINT “YOU'RE JUST MY TYPE! HOW
ABOUT A DATE?":GOTO 50

4 PRINT “YOU’'RE CUTE, BUT | HAVE A HEART OF STEEL."

5@ END

Hi, cUuTiE ¥
HOW ABouvr
ADATE ? &

Note that the computer will check for the exact string—in this
instance, “YES”—to determine whether it is equal to the value
entered for A$. The strings “Yes” (with lower case letters) or
“YES” (with a blank in front) will be rejected as not equal.

93

The Numbers Game

** Here is a game that will impress your friends. The
computer will “think” of a random number between 1 and 20
inclusive, which your friend will try to guess. The computer will
let her know when she is getting close to the number and tell
her if she guesses it.

Functions

The random number is selected by using a function called
RND. You can think of a function as a small, built-in program
that you can use in the programs you write. There are many
functions that come with most versions of BASIC—some for
helping you with strings and some for numbers. The RND
function is for numbers. You can have the computer pick a
random number between 1 and 20 inclusive with the following
statement.

X = RND(20)

(The number inside the parentheses is called the argument of
the function. An argument may be a number, an expression, or
a variable.)

Another function this game will use is ABS, for ABSolute
value. The value of the expression ABS(6-9) is 3, just as the
value for ABS(9-6) is 3. It is of no importance which number in
the argument is larger, it only matters what their difference is.
It will always be positive.

You’ll find that the “guessing” program is really very simple. It

uses several IF...THEN statements to have the computer
choose which “helper” statement to print for your friend.

For practice at flowcharting, you should step through the

94

sample flowchart of the program shown below. Following that
is a listing of the program. You can make your own program as
simple or as complicated as you like. Try customizing the
message you print for the friends who play your game!

RANDOM NUMBER

BETWEEN 1 & 20 |=
INCLUSIVE

\NPUT GUESS
X

Y

1S
ABS (X-N)
<4

PRINT “YOU'RE | YES
WARM”

PRINT “YOU'RE | | PRINT“YOU GOTIT” |
STILL COLD”

INPUT WANT TO
PLAY AGAIN? AS$

A$ = “Y” OR
X As - “YES’!

PRINT
“QKAY, GOODBYE”

95

Here is a listing of the program.

10 X = RND(20)

15 PRINT “ENTER A NUMBER BETWEEN 1 AND 20."
20 INPUT "'YOUR GUESS™; N

3P IF X = N THEN PRINT “YOU GOT IT!"": GOTO 109
40 IF ABS(X-N)< 4 THEN PRINT “'YOU'RE WARM!":GOTO 20
5@ PRINT “YOU'RE STILL COLD!"

6Q GOTO 20

100 PRINT “WANT TO PLAY AGAIN?"

110 INPUT AS

12D IFAS = “Y" ORA$ = “YES” THEN GOTO 10
130 PRINT “"OKAY, GOODBYE!"

149 END

Logical Operators

Take a good look at line 120 in the program above. Notice that
its form is

IF (condition 1) OR (condition 2) THEN. ..

The “OR” is one example of a logical operator. You are already
familiar with the arithmetic operators (such as “+” and “-”)
and the symbols for comparing strings and arithmetic
expressions (see Page 91). There are additional BASIC words
that allow you to combine two or more conditions within a
selection structure, as in line 120 of the preceding exercise.
When the computer finds the statement

IF (condition 1) OR (condition 2) THEN. ..

it will execute the THEN part of the statement if either
condition 1 or condition 2 or both is true.

96

A second logical operator is AND. Whenever the computer
finds a statement such as the following

IF (condition 1) AND (condition 2) THEN. ..

it will execute the THEN part of the statement only if both
conditions are true. Yet another logical operator is the word
NOT, which simply negates an expression. For example,

NOT(A = B)
is the same as the expression
A< >B

Experiment with these operators to see for yourself just how
they work.

** The following exercise illustrates how the logical operator
AND can be used. Suppose a princess wants to marry only a
handsome prince. She might make a computerized application
form for prospective husbands. If an applicant responds with
the right combination of characteristics, he is the one for her.
The princess might write the following program.

10 PRINT ““PLEASE ANSWER THE FOLLOWING QUESTIONS
TRUTHFULLY ™

20 PRINT “TYPE YES OR NO”

3@ INPUT **ARE YOU OVER 90 YEARS OF AGE";A$

40 INPUT *ARE YOU A REAL PRINCE";P$

5@ INPUT ""ARE YOU HANDSOME"";H$

B0 PRINT

70 IFA$ = “YES” THEN PRINT ““SORRY—I'D RATHER HAVE A
YOUNGER PRINCE.”:GOTO 90

80 IFP$ =“YES” AND H$ = "YES” THEN PRINT “WHAT ARE YOU
DOING SATURDAY?":GOTO 10

90 PRINT "'BETTER LUCK NEXT TIME!"

10D END

97

As you see, line 80 makes sure that the applicant is both a
prince AND handsome.

Subroutines

Remember your “bug” friend from Chapter 4? How would you
like to make it hop around on the screen? The following
describes how you can do that, as well as any “animation” you
like, by using subroutines. A subroutine is a part of your
program that is executed several times. How is it different
from a loop then? A loop is also a part of the program that is
executed several times, but sequentially. Then the execution
moves on. The subroutine, on the other hand, is a part of the
program that is executed once here, then once later on, and so
forth. Programmers say that a program ‘“calls” a subroutine.
The way to call a subroutine is as follows.

35 GOSUB 20—
o> ,
, ° | (other program lines)
®
o ,
80 END (an END statement, which prevents
° accidental execution of
® | subroutine lines)
o200 <,‘—_"__ (first line of subroutine)

| — 265 RETURN (last line of subroutine)

Line 35 in the example above calls the subroutine, whose first
line is 200. The last line of the subroutine is 265, a RETURN
statement. The computer must find exact pairs of “GOSUB”
and “RETURN” statements in order to successfully execute
the lines of the subroutine and RETURN to the main part of the
program. In the example above, the RETURN statement will

98

cause program execution to return to line 40, the line following
the GOSUB statement. The END statement in line 80 prevents
the computer from stumbling into the subroutine illegally. It is
a recommended practice to make all of your subroutines with
higher line numbers than the body of your program; you should
also use an END statement at the end of the main program.

The flowchart for a subroutine looks much the same as that for
the main program. However, instead of BEGIN and END, the
symbols ENTER and RETURN are used, as the following
example shows.

(SUBROUTINE 200)

G

(MAIN PROGRAM) +
CALL SUBROUTINE +
200

v

Y

(RETURN)

There is another use for subroutines besides executing the
same few lines at different places in the program. You will find
that your programs are much easier to debug and simpler to
understand if you break them up into parts and make each part
a subroutine. For example, if you have three major steps in

99

your program, you might write a main program that consists of
the following.

20 GOSuUB 10p

3p GOSUB 2pp

4 GOSUB 3PP
5@ END

Then you would write subroutines 100, 200, and 300. When you
finished writing the program, you could test each subroutine
separately to make sure it was free of errors. You’ll be sure to
find that this style of writing programs is much easier—and
thus much more fun!—than writing long, rambling sequences.
Again, a key to success is to write a clear algorithm and then a
flowchart before you start to program.

** |If you saved your first “bug” program from Chapter 4, you
may now simply turn the lines that print your bug into a
subroutine. Just for practice in calling a subroutine and
returning to the main program, load your bug program and
then add the following lines.

190 GOSUB 10D
20 END

(Be sure to change the END statement on your original
program to a RETURN statement.)

Next, write a second subroutine that prints the bug in its
“hopping” position, and a third one that “erases’” the bug. You

100

probably understand already just how the bug can appear to
“hop” around on the screen. The basic sequence would be

1. Print “regular” bug.

2. Erase it.

3. Print “hopping” bug.

4. Erase that.

5. Print “regular” bug in a new place on the screen.

If you repeatedly run a program that contains this sequence of
steps, you will see a hopping bug! A sample program for the
sequence is printed below. Use your imagination! The program
printed here can serve merely as a guide. Think up different
things to do with your bug. Design different creatures!

1 REM BUG HOPPING PROGRAM
1@ INPUT X,Y

2p GOSUB 1pp

3P GOSUB 3P

40 GOSUB 2pp

50 GOSUB 3pp

60 GOSUB 1P

70 END

109 REM REGULAR BUG

110 PRINT@84*X + Y,CHR$(128);CHR$(137);CHR$(144);
CHR3(160);CHR$(134);CHRS(128);

120 PRINT@B4*(X + 1) + Y,CHR$(128); CHR$(183);CHR%(191);
CHR$(191);CHR%(187);CHR$(128);

130 PRINT@64*(X+ 2) + Y,CHR$(168); CHR$(140);,CHR$(159);
CHR$(175);CHR$(140);CHRS(148);

140 RETURN

Vimit X, from 0 through 12 and Y, from 0 through 57

101

2PP REM HOPPING BUG

210 PRINT@B4*X + Y,CHR$(152);CHRS(140); CHR$(144);
CHR$(160);CHRS(140);CHRS(164);

220 PRINT@84*(X + 1) + Y,CHR$(128);CHR$(183);CHR$(159);
CHR$(175);CHR$(187);CHRS(128);

230 PRINT@B4*(X + 2) + Y,CHR$(140);CHR$(1 72);CHRS(1 40);
CHR$(140);CHR$(172);CHRSB(140);

240 RETURN

3PP REM ERASE BUG

310 PRINT@B4*X+Y," ;

320 PRINT@B4*(X+ 1) +Y," "
33p PRINT@6B4*(X+2) +V," "
340 RETURN

The REM Statement

How is your bug behaving? Notice the first line of the program
and the first line of each of the subroutines. They all begin with
“REM”. REM is a handy BASIC word that means the remainder
of the line is a REMark. BASIC will ignore anything that follows
the REM instruction (that is, until the beginning of the next
line). It is a very good practice to put remarks in your program
to inform you—and others who might read your program
listing—what each part does. Often, you will want to change
an old program. Instead of having to figure out what a section
does, you will find it helpful to put a REMark that quickly
explains that section. A good programming practice is to place
a remark at the beginning of each program indicating the
program’s name and its purpose.

1(Press space bar 6 times between quotation marks)

102

“Do-Nothing” Loops

Sometimes computers work faster than you would really like
them to. In the preceding program, you probably had to watch
closely in order to see your bug hop. You can easily slow down
the execution of different steps of a program—an important
ability, when doing computer graphics! Since the computer
isn’t satisfied without something to do, why not give it some
“busy work”? A good way to do so is by inserting loops that do
nothing except loop. For example, the following line inserted
in a program will cause a delay of about three seconds.

4PP FOR X = 1 TO 10PP:NEXT X

(Of course, the line number you assign depends on the point at
which you want the pause to be executed.) Experimentation
will provide you with the numbers that are best for the amount
of delay you want in each instance. For example, in our “BUG
HOPPING PROGRAM," add the following lines:

25 GOSUB 4¢P

45 GOSUB 4P

4PPFORK = 1 TO 25:NEXT K
410 RETURN

Animation

You can go even further with your program and animate your
bug by placing the main part of the program (lines 1 through 60
in the sample above) inside a loop. Using the STEP instruction
you learned about in Chapter 4, you can make the bug hop
across or down the screen—or just about anywhere you

103

choose. A modification of the main part of the bug hopping
program, listed below, shows how you can create the anima-
tion. As you have probably found on your own, there is no limit
to the number and kinds of interesting things you can do with
the programs you write!

5 REM NEW IMPROVED BUG HOPPING PROGRAM
TMPFORX = PTO 12 STEP 3

15 FORY = PTO 57 STEP 6

20 GOSUB 1P
25 GOSUB 4pp
3P GOSUB 3PP
49 GOSUB 20D
45 GOSUB 40
50 GOSUB 3PP
B0 NEXT Y

65 NEXT X

70 END

100 REM REGULAR BUG

®
@
®
2pp REM HOPPING BUG
(-]
®
@

3PP REM ERASE BUG

409 FORK = 1 TO 25: NEXT K
410 RETURN

104

Conclusion

You should know enough by now—providing you have worked
through the exercises—to design and write a variety of
computer programs. This book has presented many of the
important steps in creating programs, as well as the major
BASIC instructions needed. Your own experience, however, is
the best teacher in the world! You will get great satisfaction out
of seeing graphics on the screen or having your friends think
the computer knows them by first name, realizing that such
effects are the result of your own effort and imagination. Enjoy
your TRS-80!

105

COMPUTER LANGUAGES

From your introduction to microcomputers, you know that
computers are not able to function unless an interested
person provides the directions. Computers need instructions
in the form of programs for every task. Some of these
programs are built into the computer when you buy it and are
stored in the computer’s memory (in the ROM) ready to use.

These instructions tell the computer how to respond to your
commands, perform all arithmetic operations and perform
other fundamental tasks that you might take for granted. These
built-in programs also include instructions which allow you to
communicate with the computer in an English-like language.

There are many different languages with which people can
communicate with their computers, just as there are many
different languages used by people from different parts of the
world. These languages developed because people wanted to
convey different ideas that involved a unique variety of terms
and concepts.

DA OlABrAEZHO
EﬁTle Nr‘d'ﬂ.j ‘l"-" |
M@ D |

= —

ST

In The Beginning

The very first computers were programmed simply by the way
the various parts were connected. A new idea was communi-
cated to the computer simply by changing some of the connec-
tions. Information was held in vacuum tubes and later in
transistors by a simple code based on whether the vacuum
tube was turned on or off. Thus everything in the computer had
to be written in a code that had only two symbols such as +
and - or @ and 1. Can you imagine trying to write a message to
a friend in a secret code with only two symbols?

107

Assembly Language

The computer itself still understands only the two symbols, @
and 1, called Blnary digiTS or BITS. Since people don’t think in
a language like that and writing a coded page filled with zeros
and ones without making a mistake is difficult, easier ways to
“talk” to the computer were needed. Assembly language code
is easier for people because it uses more symbols, letters, and
numbers. The computer translates this code into zeros and
ones and follows the instructions. This code works very well
for people who use the language to program computers
regularly. For beginning computer users this code appears
strange, secret, and difficult to use.

Typical code in assembly language looks like this:

@3B1 FB8 EF F4 LDB

p3B4 C5 @2 BITB
p3B6 27 F9 BEQ
p3B8 B84 7F ANDA
P3BA B7 EF F5 STA
¢3BD 39 RTS

This particular routine checks whether a character has been
typed on the keyboard, waits until one is typed,and then puts
that letter or number on the screen.

Computer languages that use familiar words and symbols are
known as high level languages. They were developed begin-
ning in the 1960’s. In these high level languages, every word
represents an entire series of instructions for the computer.
Each word entered into the computer refers to a sequence of
instructions already stored in the ROM as “low level”
computer code similar to the assembly language routine
already described.

108

FORTRAN

The very first high level language, FORTRAN, remains one of
the more popular computer languages and is now available on
some microcomputers. FORTRAN means FORmula TRANsla-
tion because everything in this language is based on the use of
mathematical formulas. FORTRAN is primarily used by
scientists and mathematicians. A strength of the FORTRAN
language is that the computer can run a FORTRAN program
very quickly.

00 1@ 1=1.5@) [KOUNT= KOUNT+[J
[F (ANS (1)) =

Here is a sample of a FORTRAN program designed to analyze a
True-False questionnaire of 50 questions.

LOGICAL ANS (50)
READ (5.100) ANS
KOUNT = @

DO 1P I=1, 50
IF (ANS ()) KOUNT = KOUNT + 1

190 CONTINUE
WRITE (6,20¢) KOUNT
STOP

10p FORMAT (50 L1)
2pp FORMAT (1X, 13)
END

109

BASIC

As you already know, the language you used is BASIC. BASIC
stands for Beginners All-purpose Symbolic Instruction Code.
Most microcomputers use the BASIC language,but it was not
originally intended to be a programming language. In 1963 a
group at Dartmouth College wrote BASIC as a program to help
non-mathematics students learn about the computer. BASIC
was so successful that it grew into a language of its own.
BASIC is easy to learn and convenient for programmers to
write,but is not as fast for the computer to use as some other
languages.

Here is a sample of a BASIC program.

NEW

10 PRINT “HI,WHAT IS YOUR NAME?"

20 INPUT N$

30 PRINT “DO YOU HAVE A FRIEND WITH YOU?"
490 INPUT AS

50 IFA$ = “YES” THEN 10

6@ PRINT “TOO BAD, GOOD-BYE " ;N$

70 END

Hi, WHAT Is
YOUR NARE®

Try this on the TRS-80 now. It will work for you because the
TRS-80 speaks BASIC. Press |[ENTER] at the end of each line.
Type RUN and press [ENTER|to see it work.

There are other languages available for microcomputers and
someday you may want to learn another one. Each computer
language has its own characteristics and specific strengths.

PILOT

PILOT was originally designed for teachers to write
instructional material. The name itself stands for Programmed
Inquiry Learning Or Teaching. With the PILOT language a
teacher can easily ask questions, receive and check answers,
and give varied responses. The language also includes ways of
presenting material on the screen in an interesting way. There
are several versions of PILOT available for microcomputers.
Since the commands in PILOT are one or two letters only, it is
an ideal language for beginners. Some simplified versions of
PILOT are designed to be an introductory language.

111

A program written in PILOT looks like this:

10 R: CONDITIONAL MATCH PROGRAM

2P T: WHO WAS THE 16TH PRESIDENT OF THE UNITED STATES?
30 A: 8P :

40 M: ABRAHAM LINCOLN, LINCOLN, ABE LINCOLN

50 TY: RIGHT! GOOD FOR YOU.

60 TN: NO, THE ANSWER IS ABRAHAM LINCOLN.

70 T: COME BACK LATER FOR ANOTHER PRESIDENT QUESTION.
BQ E:

This program prints the question on the screen and waits for
an answer. When the answer is given, the program checks to
see if it matches the correct answer. The response to the
student depends on whether the answer is a match or not a
match.

ABE LINCOLN
RIGHT ! 600D FOR YOU

112

LOGO

LOGO is another language available on many
microcomputers. A special part of LOGO called Turtle
Graphics has been included in other languages and is
available on even more computers. LOGO is quite different
from PILOT and BASIC. You can write procedures in LOGO
with just a few commands and then build the language to fit
your ideas by defining your own terms. You begin to “teach”
the computer the language you want it to know.

A procedure written in LOGO looks like this:
TO SQUARE :SIDE
REPEAT 4 (FORWARD :SIDE RIGHT og)
END

This program will draw a square of any size you choose on the
screen. For example, the command SQUARE 10 will make a
square with 10 units on a side.

113

LISP

LOGO was derived from the language called LISP, which is
very different in appearance from most of the other languages.
For example, (Times 9 3) would put 27 on the screen. After
entering

(SET’FRIENDS’ (DICK JANE SALLY))

into the computer, (DICK JANE SALLY) would appear on the
screen when you typed FRIENDS!

PASCAL

Another language that is commonly used with microcom-
puters is PASCAL. This is a relatively new language compared
to BASIC and FORTRAN. You may want to learn PASCAL and
become a programmer. PASCAL was named for Blaise Pascal,
the French mathematician who designed the first mechanical
adding machine while he was still a teenager.

114

PASCAL is called a structured language and looks quite
different from the other languages discussed previously. Once
you’re familiar with PASCAL, however, it is very easy to read.
PASCAL was designed to write very large programs and for
teams of programmers working together on a large project.
One of the advantages to PASCAL is that it runs more quickly
in the computer than BASIC. You can do many things more
easily with PASCAL than with BASIC, but it is a more
complicated language to learn.

A PASCAL program that instructs the computer to print the
squares of the numbers from 1 to 10 would look like this:

PROGRAM SquareNumber (output);
VAR number:integer;

BEGIN
FOR number := 1 to 10 DO
Writeln (number * number);

END .
115

FORTH

Another language used to write many commercial microcom-
puter programs is FORTH. It resembles assembly language
more than the other high level languages and, as a result,
programs written in FORTH run very quickly. It differs from
assembly language, however, because you may create new
words that the language can understand—words that perform
whatever you tell them to. Here is a sample FORTH program
that would print HI on the screen five times when you run it.

: PRINTHI . HI™ S
:5HI 5 P DO PRINTHI LOOP ;

0 A Go
\\ M\ 2 FORTH!

A
§ AN

TN \\\L\\\«\\ 7
! m\\ M\

Other Languages

Some of the other languages you may hear about are
mentioned below. Most of these languages are available on
the big main frame computers, but may be rewritten for micro-
computers in the future.

116

ALGOL, stands for ALGOrithmic Lahguage. It is one of the first
high level languages and is rather mathematical. It has many
similarities to FORTRAN.

COBOL, COmmon Business Oriented Language, was written
for business applications.

ADA is a new language used by the U.S. Department of
Defense. It was named after Ada Lovelace, who was a pioneer
computer programmer.

PL/1,(Programming Language#1)isanearlycomputer language
still used in scientific and engineering problems.

SNOBOL, StriNg-Oriented symBOlic Language, was written

especially to handle words—‘“strings”. It is used in artificial
intelligence.

D,

| SAID SNOBOL,
NOT SNOWBALL.

[

LISP is an acronym for LISt Processing and is very different
from the others. LISP is the language from which LOGO was
derived.

C is the language used to write the popular and powerful UNIX
operating system.

Any computer language is just a set of rules for the computer
to follow. Each language has its own distinctive style and
philosophy. Each has a special purpose and an application for
which it is best suited. Many languages were written by
individual companies or for particular computers. FORTRAN
and PL/1 were written by IBM, while SNOBOL was written at
Bell Telephone Labs.

Any computer language is a powerful tool when you learn to
use it. Practicing with the language most suited to your needs
on the TRS-80 will increase your enjoyment of this exciting
machine. The TRS-80 will do what you ask when you “speak” a
language it understands.

118

GLOSSARY

algorithm A procedure for solving a problem or making a
decision.

argument The variable or information that a function needs as
information. For example, in the function ABS (X), X is the
argument of the function.

Arithmetic Logic Unit (ALU) The part of the computer that
does all the math in the computer.

assignment The storing of a value in the variable using the
assignment instruction (variable name =value).

BASIC (Beginner’s All Purpose Instruction Code) A program-
ming language.

bug A programming term for an error or mistake.

call To execute a subroutine. A call implies that the
subroutine will return control when it has finished its task so
the program can continue with the next BASIC statement.

Cathode Ray Tube (CRT) A picture tube used to show informa-
tion. One kind of output equipment.

Central Processing Unit (CPU) The part of the computer that
interprets instructions and carries them out; the “core” chip of
the computer.

character A letter, digit, or other symbol used to represent
information (data) for the computer. All symbols that appear
on a computer keyboard are characters.

complement (logical complement) The exact negation of a
statement.

control unit The part of the computer that directs the flow of
data or information through the computer.

119

cursor A square symbol that tells where on the video screen
the next character will appear; the “place keeper”.

data The information that is put into the computer to be
processed by a program or that results when the program is
RUN.

debugging The process of finding and correcting the mistakes
in a computer program.

disk drive A machine that plays and records on disks and
diskettes; one kind of input or output equipment.

diskette A storage material about 5% (13.34 cm) or 8” (20.32
cm) across with a magnetic surface for recording. Enclosed in
a square, plastic, protective covering.

Disk Operating System (DOS) A set of computer programs
that control other programs and allow for the transfer of
information from and to a diskette.

editing The process of changing or correcting a program line.

execute To perform or carry out, as to execute (or RUN) a
computer program.

flowchart A picture or little map using symbols to show the
steps of a program.

function A small built-in program that allows special actions
to be performed on a program and its data. Some functions
handle strings and others handle numbers and the values of
numeric variables.

graphics Pictures; a way of showing information by pictures
rather than by words.

hardware The computer and its parts, as opposed to software.

incrementing Increasing the current value of a numeric
variable (usually by one).

120

infinite loop A loop that has no way of ending.
information Organized data used in a computer program.
input Information put into the computer.

input equipment Any of the pieces of equipment used to put
information into the computer such as a keyboard, disk drive,
program recorder or modem.

instructions Directions for the computer to follow.

interpreter One of the programs in the computer’s system that
translates BASIC or another language into information the
machine can understand.

jump A change in the usual order in which instructions are
followed; a branch. For example, a computer may follow one
set of instructions if a number is greater than 5 and another
set of instructions if the number is less than 5. In BASIC this is
signaled by a GOTO statement. It may also be implied in an IF
statement.

keyboard The part of the computer that operates like a
typewriter to give input to the computer.

language A set of words and other symbols used to give
instructions to a computer.

line number The number in front of program instructions. The
computer will normally follow instructions in order of line
numbers.

LIST The command to the computer to give a listing of the
program in use.

LOAD The command to the computer to take information into
the memory unit.

logic The process of breaking down a problem in step-by-step
order.

121

logic error A mistake in constructing a program so that it
operates as intended.

logical operator One of the words — AND, OR, and NOT — that
allow two or more conditions to be combined in a selection
structure.

loop A set of instructions that repeats.

loop index The variable used in a loop that stores the number
of times the loop has already been executed.

magnetic tape A plastic ribbon that has a chemical coating
that can be magnetized. Information can be recorded on
magnetic tape and “fed” into the computer’s memory.

memory The part of the computer that stores information.

menu A list of options, choices, from which the user may
choose.

microchip A tiny circuit etched onto silicon crystal.
mode An operating state of a computer; a method of working.

modem A machine used to allow a computer to receive or
send information over a telephone line.

nesting (loop nesting) The method of placing one program
loop inside another.

operating system A program or set of programs in machine
language that controls the execution of computer programs.

operation One of the basic functions (jobs) a computer can
do, such as addition, subtraction, and movement of data.

output The information or results coming out of the computer.

122

precedence In a computer language, refers to the perfor-
mance of one type of arithmetic or logical operation before
others within the same statement. Among arithmetic opera-
tions, exponentiation has the highest precedence, followed by
multiplication and division (same precedence), and finally,
addition and subtraction (same precedence).

PRINT A statement to the computer to put something on the
video screen.

process A systematic order of operation followed to produce
a certain result. When the computer adds or otherwise
performs operations on numbers, it is processing the numbers.

program The set of instructions that tell the computer what to
do step by step; to write the instructions that tell the computer
what to do.

programmer A person who writes a program, instructions, for
a computer to follow.

Random Access Memory (RAM) The part of the computer’s
memory that stores information temporarily. The computer
user puts information into this memory.

Read Only Memory (ROM) The part of the computer’s memory
that contains built-in instructions. It cannot be used for
storage of programs by the person using the computer.

REM A program statement short for remark.

RUN The command to the computer to start or begin.

SAVE The command to the computer to record information to
use another time.

selection (selection structure) An instruction to the computer

to decide which action (or actions) to perform, depending on
whether one or more conditions are satisfied.

123

software The programs and instructions that go into a
computer.

string A series of characters. A string may contain any com-
bination of letters, numbers or punctuation.

subroutine A self-contained set of instructions used outside
(after the end) the main program.

syntax error An error caused by a mistake in the way a
command or information is given to the computer.

system A collection of people, machines, and methods
organized to meet certain goals.

system program One of the computer programs that come
with the computer. A system program “keeps house” to allow
other programs to be written, stored, and retrieved.

text The writing in a program, as opposed to the graphics.

variable A part of the program that is changeable or may have
different values.

video monitor A machine with a CRT screen for showing infor-
mation; one kind of output equipment.

124

I 1 1
| 1 1
] g } 1
wn) -t F o —1] = w o 1 =
B %= 5 i 2 ™} 5 2= 2= 235
aa = — = — - — ~ — = —t ™ T
o P S— L — O — G — N —t [= X e
& =5 B 2 LSS =bE cE==_ EES
— b - Lo - = -~ b ~- Ll S
- 3 w0 ™ = -]
e Sl | = T e 3 5 e - © ol ©
F = e b R ot g et -~ T — T g P e
mes SC tEEE STESE—.F £ cess [R=
- S — ™~ o0 —
- L3 e < © _— b e 21
T
|
}
— ————y o D m— 3‘1 — 91 7'[
_SECE= _ELE 5 (EE_ E=i = Es = [E=
- - — gt —— —— L o T | Ll
ST a1 S - C S T 2 R -
= 8 & i —— - b fu & T — © Ry 2
- * - - Ll ™ Ll Ll —
& S O T Ly B Ly o L L S
- - €9 —1— -~ — © — © — ~
o P e < [y 0 - e = ®
m o [= -] 0
] TS - S 2 Ty 3 2 3
- -~ - - - - - -
- ! 1 | 1
) I 1 1
1 H I 1

125

Computer Books
from

THE GOOD IDEA PEOPLE

T e 'I:':. E— =t =

PR Te

Finally, microcomputer handbooks you can understand. Written in
everyday language for the beginning beginner, these handbooks. . .

“E i
fiat 1Y

e Start at the absolute beginning
* Provide the information to make you “Computer Literate”
* QGuide you as you discover what your computer can really do

* Give you“hands-on" experiences so that you can write your own
programs

* Put you in complete control

FUNCTIONAL TOO! The built-in easel allows these books to stand
up at your computer for easy use!

Other computer books from ENRICH:
The lllustrated Computer Dictionary & Handbook $9.95

Free Software for Your ATARI $8.95

Free Software for Your Commodore $8.95
Free Software for Your Apple $8.95

Free Software for Your T| $8.95

Apple for the Beginning Beginner $8.95
ATARI for the Beginning Beginner $8.95
PET for the Beginning Beginner $8.95
TRS-80 for the Beginning Beginner $8.95
Tl for the Beginning Beginner $8.95

Ask for these books wherever
good books are sold!

Printed in the U.S.A.
ISBN: 0-86582-121-6

	_0425153344_001 01.pdf
	_0425153344_001 02.pdf
	_0425153344_001 03.pdf
	_0425153344_001 04.pdf
	_0425153344_001 05.pdf
	_0425153344_001 06.pdf
	_0425153344_001 07.pdf
	_0425153344_001 08.pdf
	_0425153344_001 09.pdf
	_0425153344_001 10.pdf
	_0425153344_001 11.pdf
	_0425153344_001 12.pdf
	_0425153344_001 13.pdf
	_0425153344_001 14.pdf
	_0425153344_001 15.pdf
	_0425153344_001 16.pdf
	_0425153344_001 17.pdf
	_0425153344_001 18.pdf
	_0425153344_001 19.pdf
	_0425153344_001 20.pdf
	_0425153344_001 21.pdf
	_0425153344_001 22.pdf
	_0425153344_001 23.pdf
	_0425153344_001 24.pdf
	_0425153344_001 25.pdf
	_0425153344_001 26.pdf
	_0425153344_001 27.pdf
	_0425153344_001 28.pdf
	_0425153344_001 29.pdf
	_0425153344_001 30.pdf
	_0425153344_001 31.pdf
	_0425153344_001 32.pdf
	_0425153344_001 33.pdf
	_0425153344_001 34.pdf
	_0425153344_001 35.pdf
	_0425153344_001 36.pdf
	_0425153344_001 37.pdf
	_0425153344_001 38.pdf
	_0425153344_001 39.pdf
	_0425153344_001 40.pdf
	_0425153344_001 41.pdf
	_0425153344_001 42.pdf
	_0425153344_001 43.pdf
	_0425153344_001 44.pdf
	_0425153344_001 45.pdf
	_0425153344_001 46.pdf
	_0425153344_001 47.pdf
	_0425153344_001 48.pdf
	_0425153344_001 49.pdf
	_0425153344_001 50.pdf
	_0425153344_001 51.pdf
	_0425153344_001 52.pdf
	_0425153344_001 53.pdf
	_0425153344_001 54.pdf
	_0425153344_001 55.pdf
	_0425153344_001 56.pdf
	_0425153344_001 57.pdf
	_0425153344_001 58.pdf
	_0425153344_001 59.pdf
	_0425153344_001 60.pdf
	_0425153344_001 61.pdf
	_0425153344_001 62.pdf
	_0425153344_001 63.pdf
	_0425153344_001 64.pdf
	_0425153446_001 01.pdf
	_0425153446_001 02.pdf
	_0425153446_001 03.pdf
	_0425153446_001 04.pdf
	_0425153446_001 05.pdf
	_0425153446_001 06.pdf
	_0425153446_001 07.pdf
	_0425153446_001 08.pdf
	_0425153446_001 09.pdf
	_0425153446_001 10.pdf
	_0425153446_001 11.pdf
	_0425153446_001 12.pdf
	_0425153446_001 13.pdf
	_0425153446_001 14.pdf
	_0425153446_001 15.pdf
	_0425153446_001 16.pdf
	_0425153446_001 17.pdf
	_0425153446_001 18.pdf
	_0425153446_001 19.pdf
	_0425153446_001 20.pdf
	_0425153446_001 21.pdf
	_0425153446_001 22.pdf
	_0425153446_001 23.pdf
	_0425153446_001 24.pdf
	_0425153446_001 25.pdf
	_0425153446_001 26.pdf
	_0425153446_001 27.pdf
	_0425153446_001 28.pdf
	_0425153446_001 29.pdf
	_0425153446_001 30.pdf
	_0425153446_001 31.pdf
	_0425153446_001 32.pdf
	_0425153446_001 33.pdf
	_0425153446_001 34.pdf
	_0425153446_001 35.pdf
	_0425153446_001 36.pdf
	_0425153446_001 37.pdf
	_0425153446_001 38.pdf
	_0425153446_001 39.pdf
	_0425153446_001 40.pdf
	_0425153446_001 41.pdf
	_0425153446_001 42.pdf
	_0425153446_001 43.pdf
	_0425153446_001 44.pdf
	_0425153446_001 45.pdf
	_0425153446_001 46.pdf
	_0425153446_001 47.pdf
	_0425153446_001 48.pdf
	_0425153446_001 49.pdf
	_0425153446_001 50.pdf
	_0425153446_001 51.pdf
	_0425153446_001 52.pdf
	_0425153446_001 53.pdf
	_0425153446_001 54.pdf
	_0425153446_001 55.pdf
	_0425153446_001 56.pdf
	_0425153446_001 57.pdf
	_0425153446_001 58.pdf
	_0425153446_001 59.pdf
	_0425153446_001 60.pdf
	_0425153446_001 61.pdf
	_0425153446_001 62.pdf
	_0425153446_001 63.pdf
	_0425153446_001 64.pdf

